

LMV331 单路、LMV393 双路、LMV339 四路通用低电压比较器

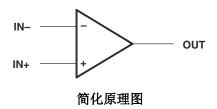
1 特性

- 2.7V 和 5V 性能
- 低电源电流
 - LMV331 130 μA (典型值)
 - LMV393 210 µA(典型值)
 - LMV339 410 µA(典型值)
- 输入共模电压范围包括接地
- 低输出饱和电压:200mV(典型值)
- 集电极开路输出可实现更大的灵活性

2 应用

- 迟滞比较器
- 振荡器
- 窗口比较器
- 工业设备
- 测试和测量

3 说明


LMV393 和 LMV339 器件分别是双路和四路比较器的 低电压(2.7V至5.5V)版本,它们的工作电压范围为 5V 至 30V。LMV331 是单路比较器。

LMV331、LMV339 和 LMV393 是颇具成本效益的解决 方案,适用于在便携式消费类电子产品的电路设计中要 求低电压运行、低功耗和节省空间的应用。无需消耗全 部的电源电流,这类器件便可达到或超出常见 LM339 和 LM393 器件的规格。

器件信息

器件型号	封装 (引脚) ⁽¹⁾	封装尺寸(标称值)
LMV339	SOIC (14)	8.65mm x 3.90mm
LMV393	SOIC (8)	4.90mm x 3.90mm
LMV331	SC70 (5)	2.00mm x 1.25mm

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

Table of Contents

1 特性	1 7.2 Functional Block Diagram	
2 应用	1 7.3 Feature Description	
3 说明	1 7.4 Device Functional Modes	
4 Revision History	2 8 Application and Implementation	
5 Pin Configuration and Functions	3 8.1 Application Information	
6 Specifications	8.2 Typical Application	
6.1 Absolute Maximum Ratings	9 Power Supply Recommendations	
6.2 ESD Ratings	4 10 Layout	
6.3 Recommended Operating Conditions	4 10.1 Layout Guidelines	
6.4 Thermal Information	4 10.2 Layout Example	
6.5 Electrical Characteristics, V _{CC+} = 2.7 V	5 11 Device and Documentation Suppo	
6.6 Electrical Characteristics, V _{CC+} = 5 V	6 11.1 Related Links	
6.7 Switching Characteristics, V _{CC+} = 2.7 V	6 T1.2 Trademarks	
6.8 Switching Characteristics, V _{CC+} = 5 V	7 This Electrostatic discharge Gaution	
6.9 Typical Characteristics	7 11.4 Glossary	
7 Detailed Description	12 Wechanical, Fackaging, and Orde	
7.1 Overview		13
Changes from Revision T (January 2015) to I • 更新了整个文档的表、图和交叉参考的编号格		Page
Changes from Revision S (October 2012) to I	Revision T (January 2015)	Page
能模式、应用和实施部分、电源建议部分、	SD 等级表、热性能信息表、典型特性、特性 布局部分、器件和文档支持部分以及机械、基	<i>対装和可订购信息</i> 部
Changes from Revision R (May 2012) to Revi	icion S (October 2012)	
Updated operating temperature range	ision 3 (October 2012)	Page
Changes from Revision N (April 2011) to Rev		4 Page
Changes from Revision N (April 2011) to Rev Changed V _I in the <i>Absolute Maximum Rating</i>	vision O (February 2012)	Page
	vision O (February 2012) gs from 5.5 V to V _{CC+}	Page

Added RUC package pin out drawing......3

(TOP VIEW)

30UT

13

j71

12

11

10

- 9

<u>| 8</u>

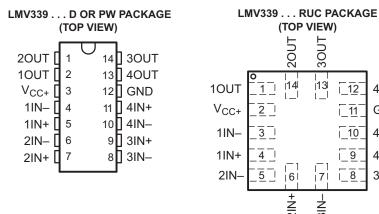
40UT

GND

4IN+

4IN-

3IN+


20UT

14

6

2IN+

5 Pin Configuration and Functions

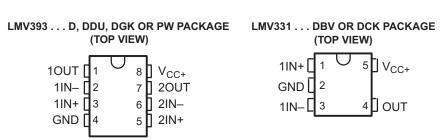


表 5-1. Pin Functions

	PIN					
	LMV331	LMV393	LM	V339	TYPE	DESCRIPTION
NAME	DBV or DCK	D, DDU, DGK or PW	D or PW	RUC		
1IN - , 2IN - , 3IN - , 4IN -	3	2, 6	4, 6, 8, 10	3, 5, 7, 9	I	Comparator(s) negative input pin(s)
1IN+ , 2IN+, 3IN+, 4IN+	1	3, 5	5, 7, 9, 11	4, 6, 8, 10	I	Comparator(s) positive input pin(s)
GND	2	4	12	11	I	Ground
10UT, 20UT, 30UT, 40UT	4	1, 7	2, 1, 14, 13	1, 14, 13, 12	0	Comparator(s) output pin(s)
V _{CC+}	5	8	3	2	I	Supply Pin

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾		5.5	V	
V _{ID}	Differential input voltage ⁽³⁾		±5.5	V	
VI	Input voltage range (either input)	0	V _{CC+}	V	
	Duration of output short circuit (one amplifier) to ground ⁽⁴⁾	At or below T_A = 25°C, V $_{CC} \le 5.5 \text{ V}$	Unlimited		
TJ	Operating virtual junction temperature		150	°C	
T _{stg}	Storage temperature range	- 65	150	°C	

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under #6.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND.
- (3) Differential voltages are at IN+ with respect to IN .
- (4) Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

		MIN	MAX	UNIT
V _{CC}	Supply voltage (single-supply operation)	2.7	5.5	V
V _{OUT}	Output voltage		V _{CC+} + 0.3	V
T _A	Operating free-air temperature	- 40	125	°C

6.4 Thermal Information

			LMV339			LM\	/393		LMN	/331	
TH	IERMAL METRIC ⁽¹⁾	D	PW	RUC	D	DDU	DGK	PW	DBV	DCK	UNIT
			14 PINS			8 P	INS		5 P	INS	
R ₀ JA	Junction-to-ambient thermal resistance	86	113	216	97	210	172	149	206	252	
R θ JC(top)	Junction-to-case (top) thermal resistance	_	_	51.3	_	_	_	_	_	_	
R ₀ JB	Junction-to-board thermal resistance	_	_	59.0	_	_	_	_	_	_	°C/W
Ψ ЈТ	Junction-to-top characterization parameter	_	_	1.2	_	_	_	_	_	_	
ψ ЈВ	Junction-to-board characterization parameter	_	_	59.0	_	_	_	_	_	_	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics, V_{CC+} = 2.7 V

 V_{CC+} = 2.7 V, GND = 0 V, at specified free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
V _{IO}	Input offset voltage		25°C	1.7	7	mV
^α VIO	Average temperature coefficient of input offset voltage		- 40°C to 125°C	5		μV/°C
			25°C	15	250	
I _{IB}	Input bias current		- 40°C to 125°C		400	nA
I _{IO}			25°C	5	50	
	Input offset current		- 40°C to 125°C		150	nA
Io	Output current (sinking)	V _O ≤ 1.5 V	25°C	5 23		mA
	Output Leakage Current		25°C	0.003		
			- 40°C to 125°C		1	μА
V _{ICR}	Common-mode input voltage range		25°C	- 0.1 to 2		V
V _{SAT}	Saturation voltage	I _O ≤ 1.5 mA	25°C	200		mV
		LMV331	25°C	40	100	
I _{CC}	Supply current	LMV393 (both comparators)	25°C	70	140	μА
		LMV339 (all four comparators)	25°C	140	200	

6.6 Electrical Characteristics, $V_{CC+} = 5 V$

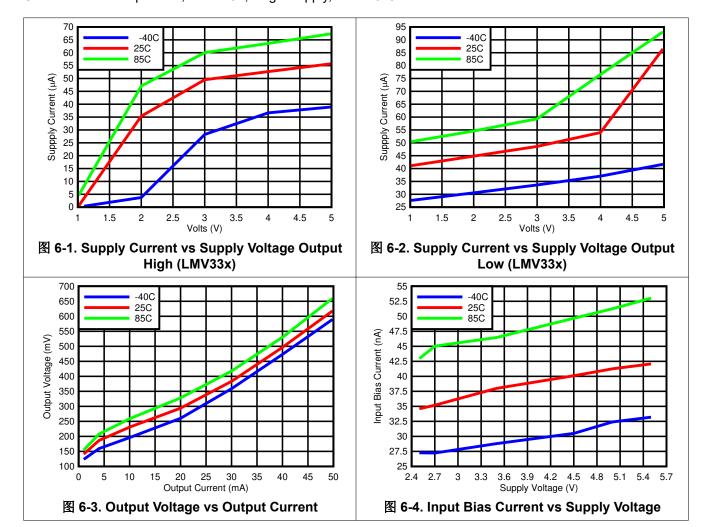
 V_{CC+} = 5 V, GND = 0 V, at specified free-air temperature (unless otherwise noted)

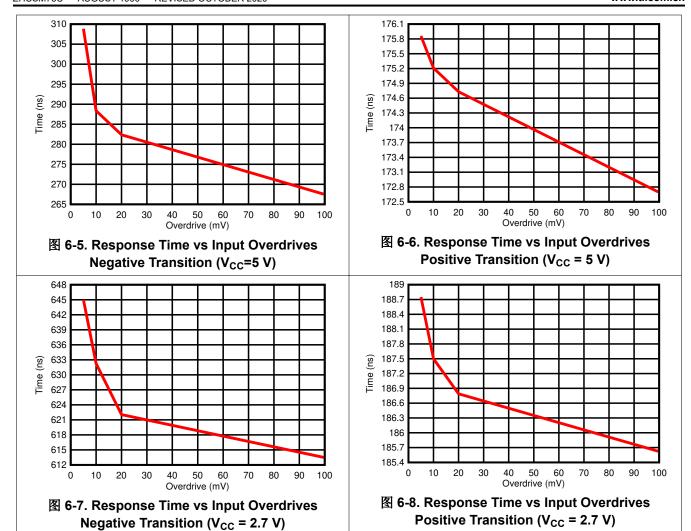
VCC+	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
			25°C		1.7	7	
V _{IO}	Input offset voltage		- 40°C to 125°C			9	mV
α VIO	Average temperature coefficient of input offset voltage		25°C		5		μV/°C
			25°C		25	250	
I _{IB}	Input bias current		- 40°C to 125°C			400	nA
			25°C		2	50	
I _{IO}	Input offset current		- 40°C to 125°C			150	nA
Io	Output current (sinking)	V _O ≤ 1.5 V	25°C	10	84		mA
			25°C		0.003		
	Output Leakage Current		- 40°C to 125°C			1	μΑ
V _{ICR}	Common-mode input voltage range		25°C	- (0.1 to 4.2		V
A _{VD}	Large-signal differential voltage gain		25°C	20	50		V/mV
			25°C		200	400	
V _{SAT}	Saturation voltage	I _O ≤ 4 mA	- 40°C to 125°C			700	mV
			25°C		60	120	
		LMV331	- 40°C to 125°C			150	
			25°C		100	200	
I _{CC}	Supply current	LMV393 (both comparators)	- 40°C to 125°C			250	μА
			25°C		170	300	
		LMV339 (all four comparators)	- 40°C to 125°C			350	

6.7 Switching Characteristics, $V_{CC+} = 2.7 \text{ V}$

 $\rm T_A$ = 25°C, $\rm V_{CC+}$ = 2.7 V, $\rm R_L$ = 5.1 k $\rm \Omega$, GND = 0 V (unless otherwise noted)

	, , , , , , , , , , , , , , , , , , , ,	,		
PARAMETER		TEST CONDITIONS	TYP	UNIT
t _{DHI}	Input overdrive = 10 mV	1000	ne	
	Input overdrive = 100 mV	350	ns	
Propagation delay low to high level outp	Propagation delay low to high level output	Input overdrive = 10 mV	500	20
	switching	Input overdrive = 100 mV	400	ns

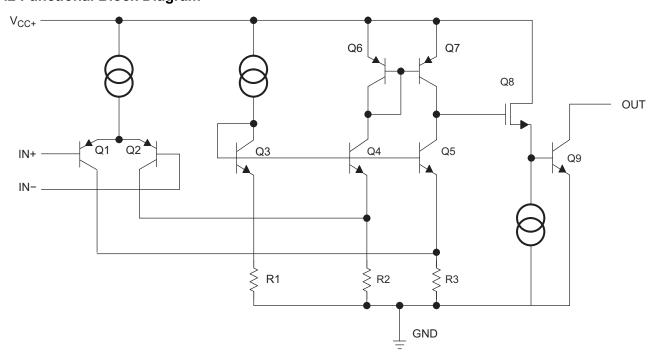

6.8 Switching Characteristics, $V_{CC+} = 5 \text{ V}$


 $T_A = 25$ °C, $V_{CC+} = 5$ V, $R_L = 5.1$ k Ω , GND = 0 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TYP	UNIT
Propagation delay high to low level output switching	Input overdrive = 10 mV	600	no	
	switching	Input overdrive = 100 mV	200	ns
Propagation delay low to high level output switching	Propagation delay low to high level output	Input overdrive = 10 mV	450	ne
	switching	Input overdrive = 100 mV	300	ns

6.9 Typical Characteristics

Unless otherwise specified, VS = +5V, single supply, TA = 25°C


7 Detailed Description

7.1 Overview

The LMV331, LMV393 and LMV339 family of comparators have the ability to operate up to 5 V on the supply pin. This standard device has proven ubiquity and versatility across a wide range of applications. This is due to it's low lq and fast response.

The open-drain output allows the user to configure the output's logic low voltage (V_{OL}) and can be utilized to enable the comparator to be used in AND functionality.

7.2 Functional Block Diagram

7.3 Feature Description

The LMV331, LMV393 and LMV339 consists of a PNP input, whose Vbe creates a limit on the input common mode voltage capability, allowing LMV33x to accurately function from ground to V_{CC} – Vbe(~700mV) differential input. This enables much head room for modern day supplies of 3.3 V and 5.0 V.

The output consists of an open drain NPN (pull-down or low side) transistor. The output NPN will sink current when the positive input voltage is higher than the negative input voltage and the offset voltage. The V_{OL} is resistive and will scale with the output current. Please see $\[mathbb{g}\]$ 6-3 for V_{OL} values with respect to the output current.

7.4 Device Functional Modes

7.4.1 Voltage Comparison

The LMV33x operates solely as a voltage comparator, comparing the differential voltage between the positive and negative pins and outputs a logic low or high impedance (logic high with pull-up) based on the input differential polarity.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

LMV331, LMV393, and LMV339 will typically be used to compare a single signal to a reference or two signals against each other. Many users take advantage of the open drain output to drive the comparison logic output to a logic voltage level to an MCU or logic device. The wide supply range and high voltage capability makes LMV331, LMV393, and LMV33 optimal for level shifting to a higher or lower voltage.

8.2 Typical Application

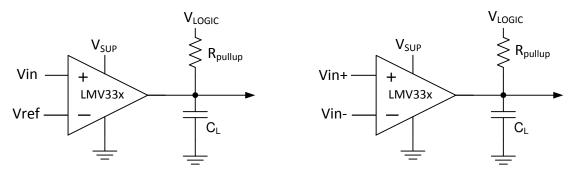


图 8-1. Typical Application Schematic

8.2.1 Design Requirements

For this design example, use the parameters listed in 表 8-1 as the input parameters.

DESIGN PARAMETER	EXAMPLE VALUE
Input Voltage Range	0 V to 4.2 V
Supply Voltage	2.7 V to 5V
Logic Supply Voltage (R _{PULLUP} Voltage)	1 V to 5 V
Output Current (V _{LOGIC} /R _{PULLUP})	1 μA to 20 mA
Input Overdrive Voltage	100 mV
Reference Voltage	2.5 V
Load Capacitance (C _L)	15 pF

表 8-1. Design Parameters

8.2.2 Detailed Design Procedure

When using LMV331, LMV393, and LMV33 in a general comparator application, determine the following:

- · Input Voltage Range
- · Minimum Overdrive Voltage
- · Output and Drive Current
- Response Time

8.2.2.1 Input Voltage Range

When choosing the input voltage range, the input common mode voltage range (V_{ICR}) must be taken in to account. If operating temperature is above or below 25°C the V_{ICR} can range from 0 V to V_{CC} - 0.7 V. This limits the input voltage range to as high as V_{CC} - 0.7 V and as low as 0 V. Operation outside of this range can yield incorrect comparisons.

Below is a possible list of input voltage situation and their outcomes:

- 1. When both IN- and IN+ are both within the common mode range:
 - a. If IN- is higher than IN+ and the offset voltage, the output is low and the output transistor is sinking current
 - b. If IN- is lower than IN+ and the offset voltage, the output is high impedance and the output transistor is not conducting
- 2. When IN- is higher than common mode and IN+ is within common mode, the output is low and the output transistor is sinking current
- 3. When IN+ is higher than common mode and IN- is within common mode, the output is high impedance and the output transistor is not conducting
- 4. When IN- and IN+ are both higher than common mode, the output is low and the output transistor is sinking current

8.2.2.2 Minimum Overdrive Voltage

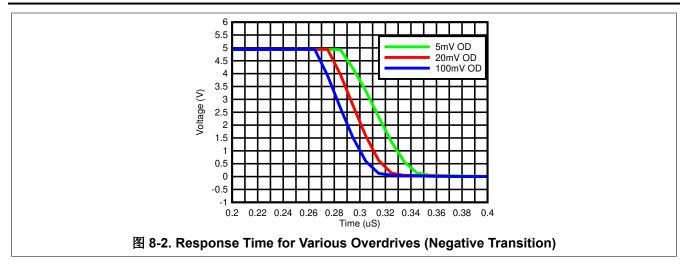
Overdrive Voltage is the differential voltage produced between the positive and negative inputs of the comparator over the offset voltage (V_{IO}). In order to make an accurate comparison; the Overdrive Voltage (V_{OD}) should be higher than the input offset voltage (V_{IO}). Overdrive voltage can also determine the response time of the comparator, with the response time decreasing with increasing overdrive. 8-2 show positive and negative response times with respect to overdrive voltage.

8.2.2.3 Output and Drive Current

Output current is determined by the pull-up resistance (Rpullup) and Vlogic voltage, refer to \boxtimes 8-1. The output current will produce a output low voltage (V_{OL}) from the comparator. In which V_{OL} is proportional to the output current. Use \boxtimes 6-3 to determine V_{OL} based on the output current.

The output current can also effect the transient response. More will be explained in the next section.

8.2.2.4 Response Time


The transient response can be determined by the load capacitance (C_L), load/pull-up resistance (R_{PULLUP}) and equivalent collector-emitter resistance (R_{CE}).

- The positive response time (τ_p) is approximately τ_P ~ R_{PULLUP} × C_L
- The negative response time (τ N) is approximately τ N ~ R_{CE} × C_L

8.2.3 Application Curves

The following curves were generated with 5 V on V_{CC} and V_{Logic} , $R_{PULLUP} = 5.1 \text{ k}\Omega$, and 50 pF scope probe.

9 Power Supply Recommendations

For fast response and comparison applications with noisy or AC inputs, it is recommended to use a bypass capacitor on the supply pin to reject any variation on the supply voltage. This variation cause temporary fluctuations in the comparator's input common mode range and create an inaccurate comparison.

10 Layout

10.1 Layout Guidelines

For accurate comparator applications without hysteresis it is important maintain a stable power supply with minimized noise and glitches, which can affect the high level input common mode voltage range. In order to achieve this, it is best to add a bypass capacitor between the supply voltage and ground. This should be implemented on the positive power supply and negative supply (if available). If a negative supply is not being used, do not put a capacitor between the IC's GND pin and system ground.

10.2 Layout Example

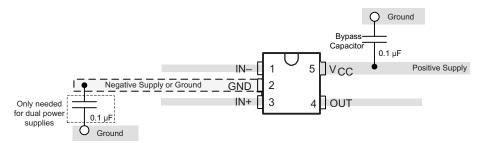


图 10-1. LMV331 Layout Example

11 Device and Documentation Support

11.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

表 11-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LMV331	Click here	Click here	Click here	Click here	Click here
LMV393	Click here	Click here	Click here	Click here	Click here
LMV339	Click here	Click here	Click here	Click here	Click here

11.2 Trademarks

所有商标均为其各自所有者的财产。

11.3 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.4 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com

16-May-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
LMV331IDBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(R1IF, R1IK)
LMV331IDBVR.Z	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(R1IF, R1IK)
LMV331IDBVRE4	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(R1IF, R1IK)
LMV331IDBVRG4	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(R1IF, R1IK)
LMV331IDBVT	Obsolete	Production	SOT-23 (DBV) 5	-	-	Call TI	Call TI	-40 to 125	(R1IF, R1IK)
LMV331IDCKR	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	(R2F, R2K, R2R)
LMV331IDCKR.Z	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(R2F, R2K, R2R)
LMV331IDCKRE4	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(R2F, R2K, R2R)
LMV331IDCKRG4	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(R2F, R2K, R2R)
LMV331IDCKT	Obsolete	Production	SC70 (DCK) 5	-	-	Call TI	Call TI	-40 to 125	(R2F, R2R)
LMV339ID	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	-40 to 125	LMV339I
LMV339IDR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LMV339I
LMV339IPW	Obsolete	Production	TSSOP (PW) 14	-	-	Call TI	Call TI	-40 to 125	MV339I
LMV339IPWR	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MV339I
LMV339IPWR.Z	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MV339I
LMV339IPWRG4	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MV339I
LMV339IRUCR	Obsolete	Production	QFN (RUC) 14	-	-	Call TI	Call TI	-40 to 125	(RT, RTR)
LMV393ID	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	-40 to 125	MV393I
LMV393IDDUR	Obsolete	Production	VSSOP (DDU) 8	-	-	Call TI	Call TI	-40 to 125	RABR
LMV393IDGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(R9B, R9Q, R9R)
LMV393IDGKR.Z	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	(R9B, R9Q, R9R)
LMV393IDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	MV393I
LMV393IDR.Z	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MV393I
LMV393IDRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MV393I
LMV393IDRG4.Z	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MV393I
LMV393IPW	Obsolete	Production	TSSOP (PW) 8	-	-	Call TI	Call TI	-40 to 125	MV393I
LMV393IPWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MV393I
LMV393IPWRG4	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	MV393I

16-May-2025

www.ti.com

- (1) Status: For more details on status, see our product life cycle.
- (2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.
- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

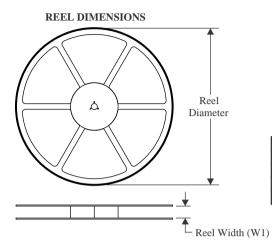
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

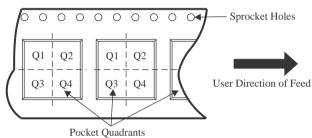
OTHER QUALIFIED VERSIONS OF LMV331, LMV393:

Automotive: LMV331-Q1, LMV393-Q1


NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

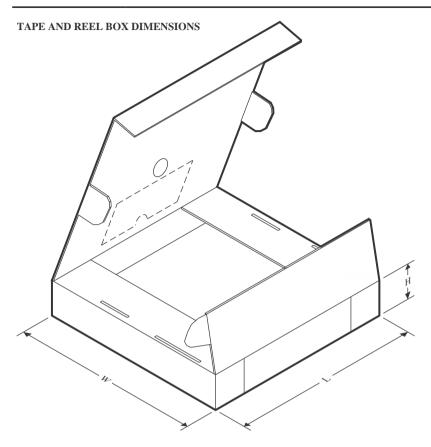
www.ti.com 13-May-2025


TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO BO Cavity AO

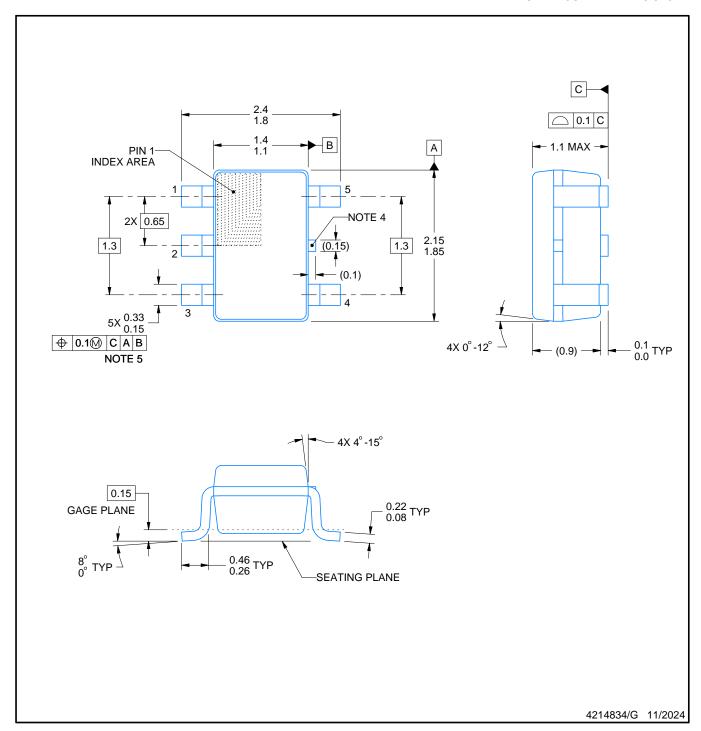
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



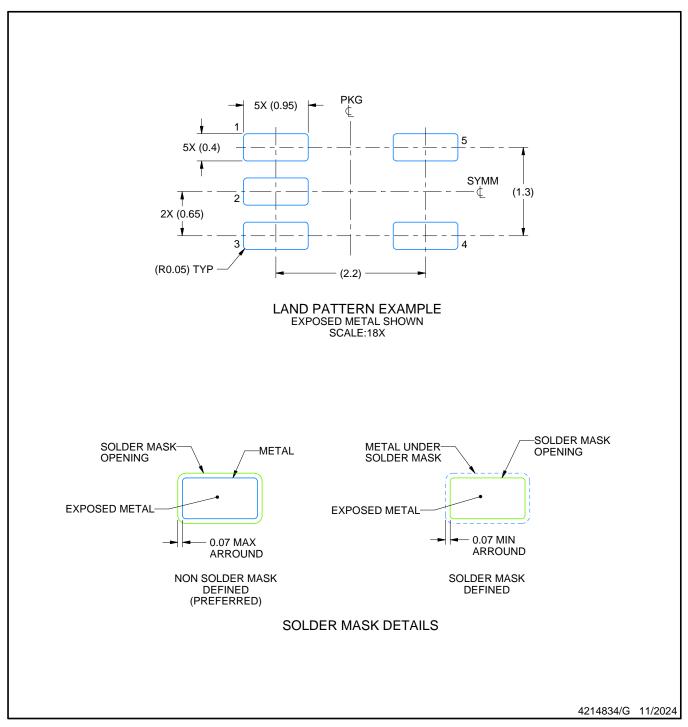
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMV331IDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LMV331IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.17	3.23	1.37	4.0	8.0	Q3
LMV331IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LMV331IDCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
LMV339IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LMV339IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LMV339IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
LMV393IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.3	1.3	8.0	12.0	Q1
LMV393IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LMV393IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LMV393IDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LMV393IPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LMV393IPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1


www.ti.com 13-May-2025

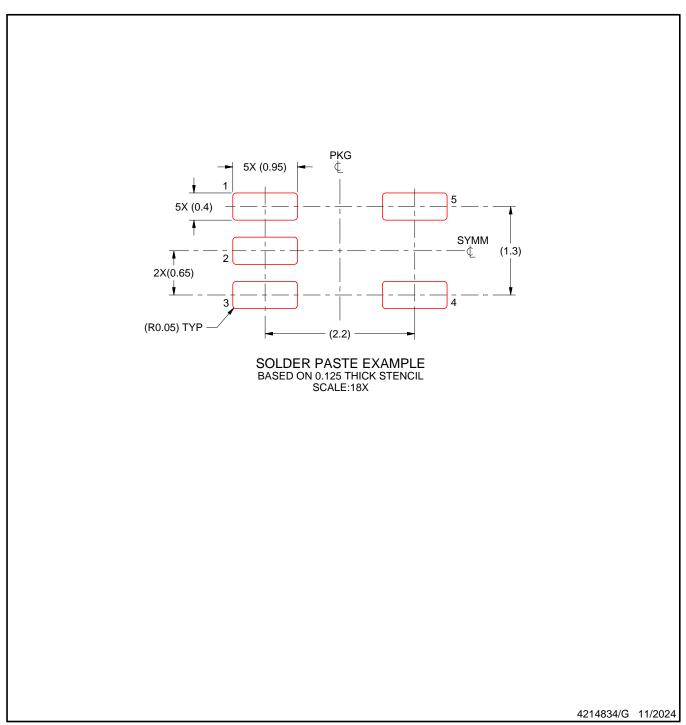
*All dimensions are nominal

	ì	1					
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMV331IDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LMV331IDBVR	SOT-23	DBV	5	3000	205.0	200.0	33.0
LMV331IDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
LMV331IDCKR	SC70	DCK	5	3000	180.0	180.0	18.0
LMV339IDR	SOIC	D	14	2500	353.0	353.0	32.0
LMV339IDR	SOIC	D	14	2500	356.0	356.0	35.0
LMV339IPWR	TSSOP	PW	14	2000	356.0	356.0	35.0
LMV393IDGKR	VSSOP	DGK	8	2500	370.0	355.0	55.0
LMV393IDGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
LMV393IDR	SOIC	D	8	2500	353.0	353.0	32.0
LMV393IDRG4	SOIC	D	8	2500	340.5	338.1	20.6
LMV393IPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LMV393IPWR	TSSOP	PW	8	2000	356.0	356.0	35.0



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC.
- 6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side



NOTES: (continued)

7. Publication IPC-7351 may have alternate designs.8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

- 9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 10. Board assembly site may have different recommendations for stencil design.

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

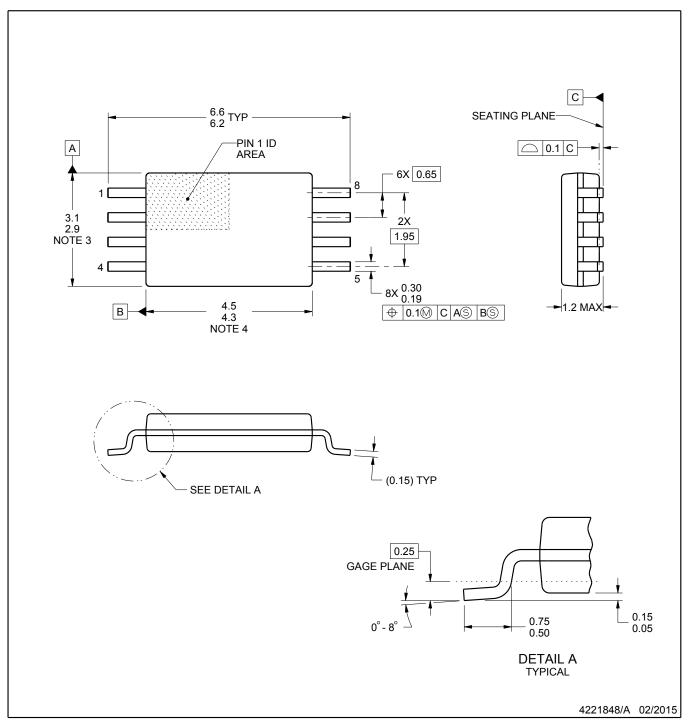
 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

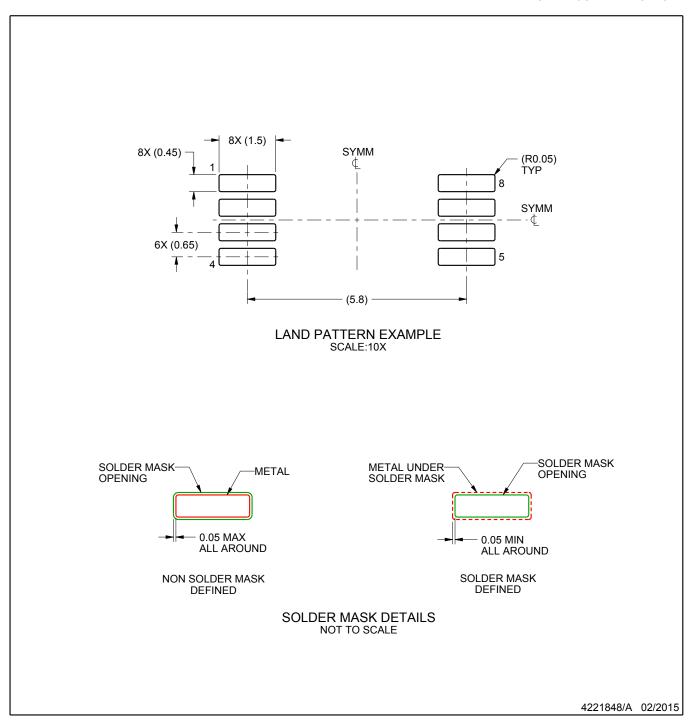
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



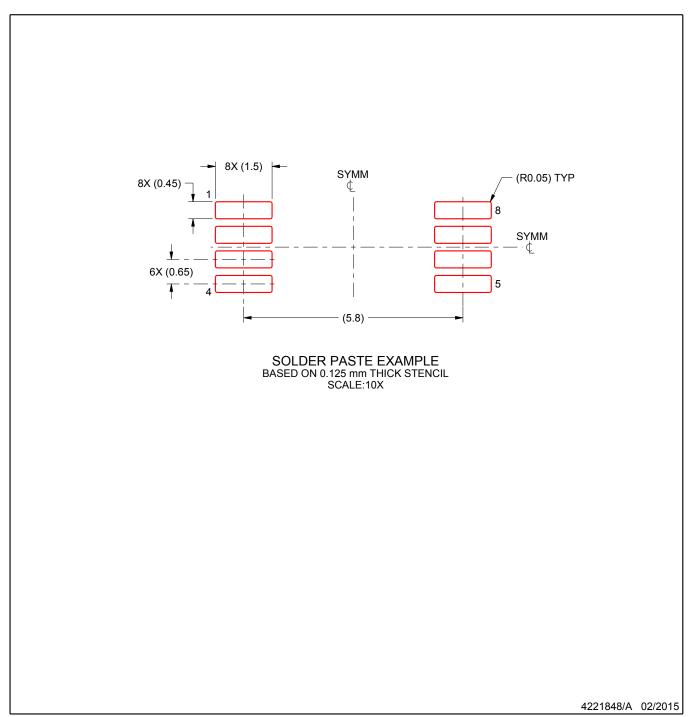
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

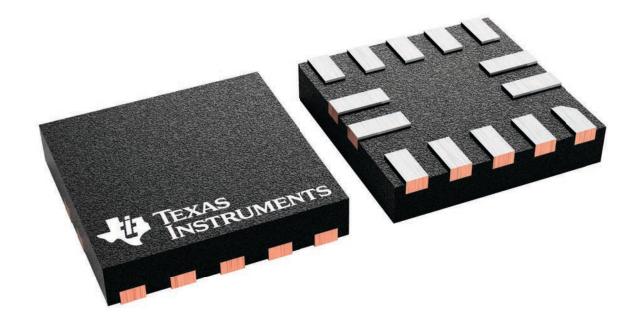
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

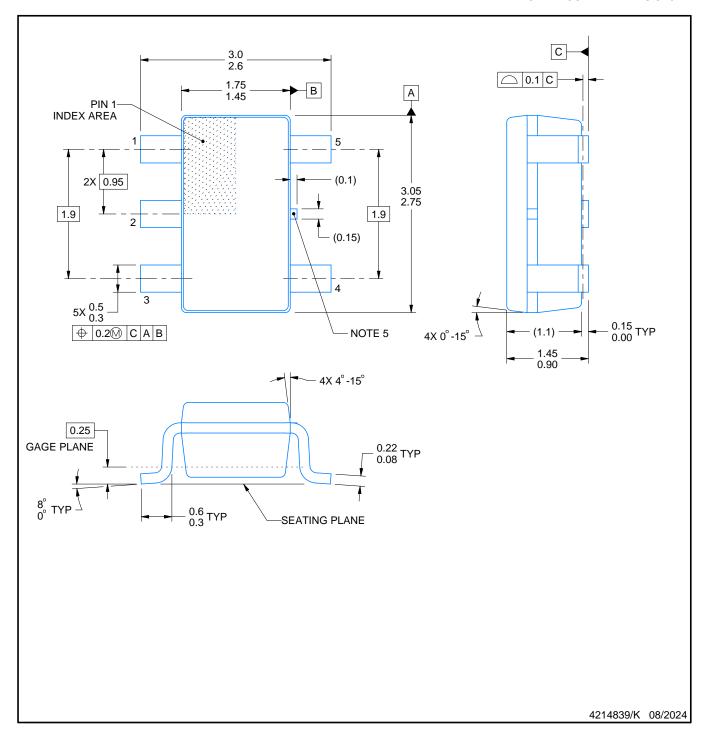


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

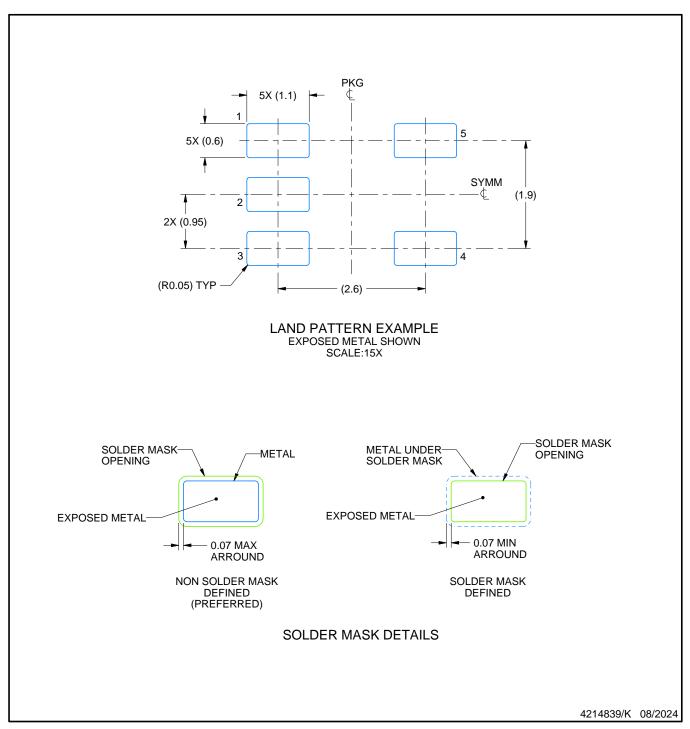
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


2 x 2, 0.4 mm pitch

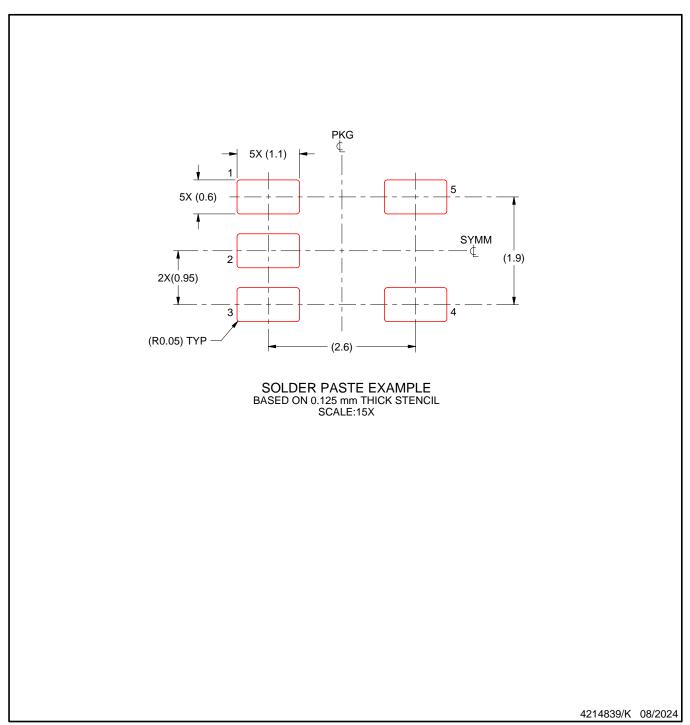
PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

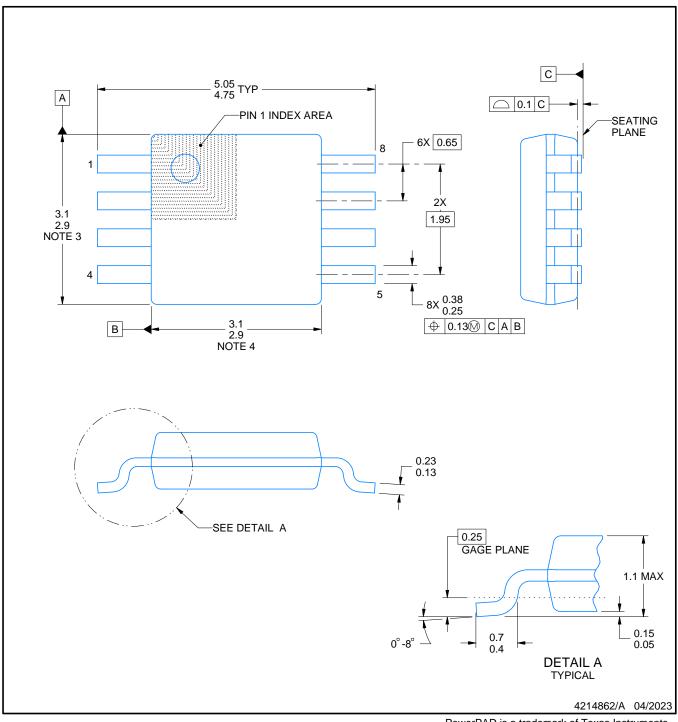
- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.



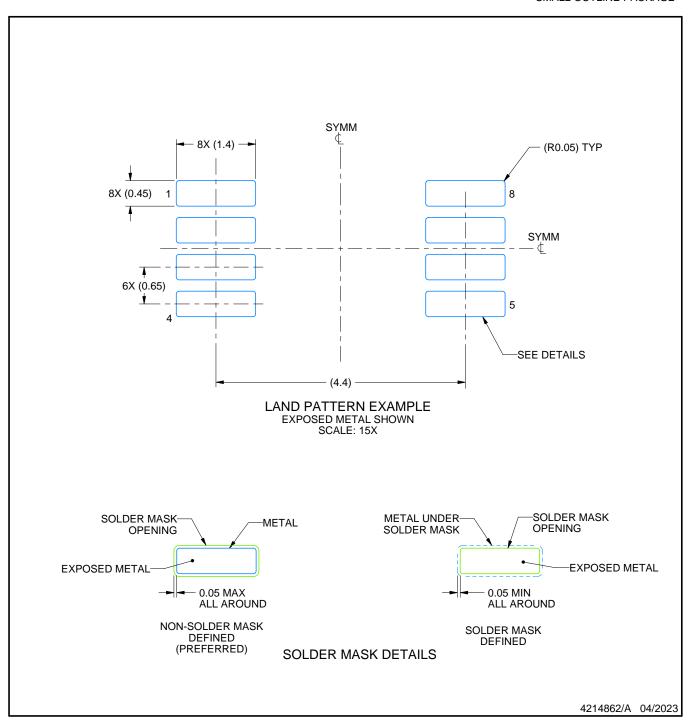
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

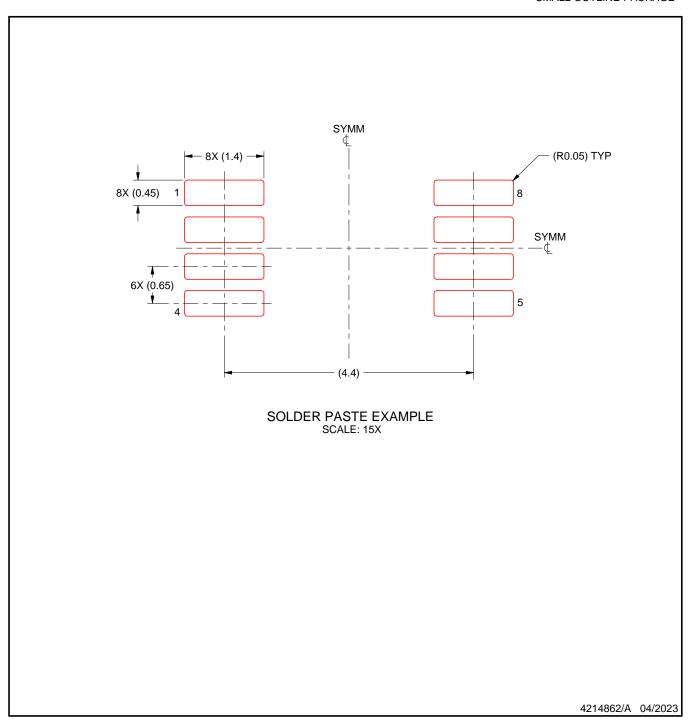


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

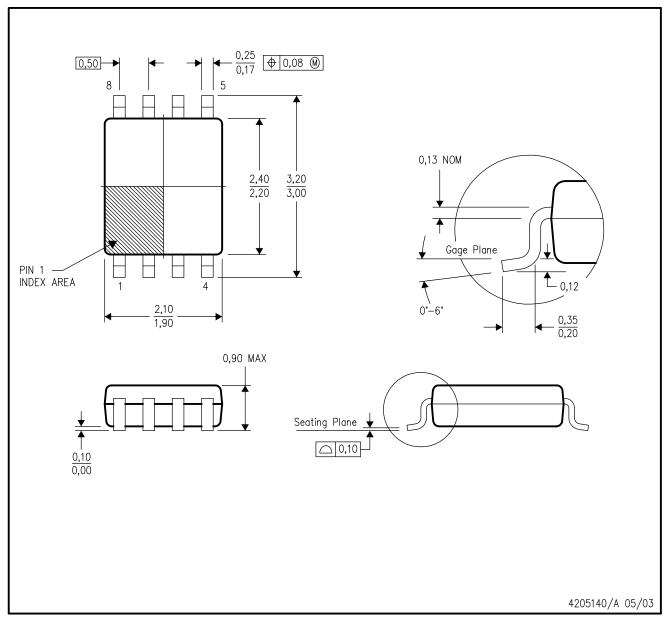

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

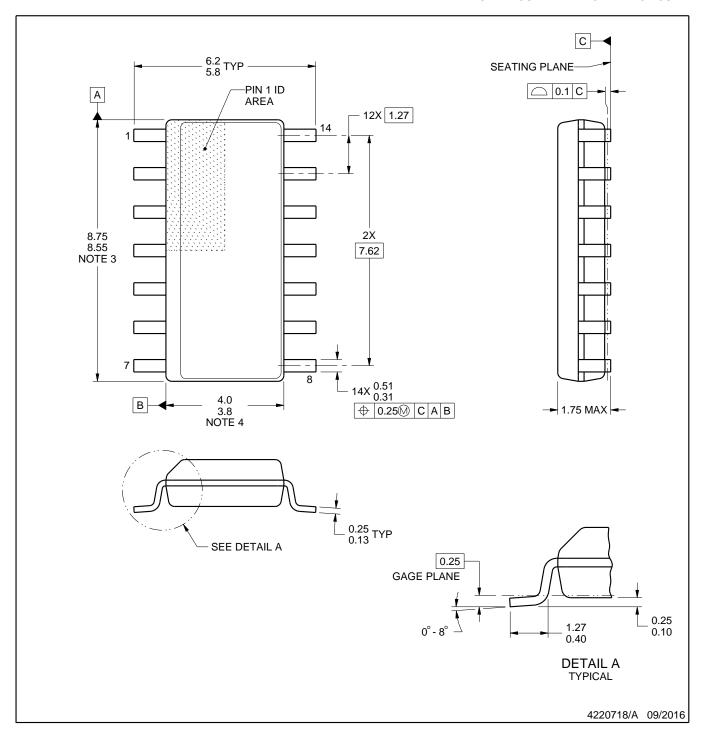

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.



- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

DDU (R-PDSO-G8)


PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation CA.

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司