

N-Channel Enhancement Mode Field Effect Transistor

General Description

The CMSA012N10A uses advanced trench technology to provide excellent RDS (ON), low gate charge and minimize the loss of power conversion applications. This device is suitable to be used as the low side FET in SMPS, load switching and general purpose.

Features

- Low On-Resistance
- 100% avalanche tested
- Conduction losses reduced
- RoHS Compliant

Product Summary

BVDSS	RDSON	ID
100V	10mΩ	50A

Applications

- DC/DC Converters in Computing, Servers, and POL
- Isolated DC/DC Converters in Telecom and Industrial

DFN-8 5x6 Pin Configuration

Type	Package	Marking
CMSA012N10A	DFN-8 5x6	CMSA012N10A

Absolute Maximum Ratings

Symbol	Parameter Rating		Units	
V_{DS}	Drain-Source Voltage 100		V	
V_{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25℃	Continuous Drain Current	50	Α	
I _D @T _C =100℃	Continuous Drain Current 35		А	
EAS	Single Pulse Avalanche Energy ¹ 56		mJ	
I _{DM}	Pulsed Drain Current	150	Α	
P _D @T _C =25℃	Total Power Dissipation 75		W	
T _{STG}	Storage Temperature Range -55 to 150		$^{\circ}$	
T _J	Operating Junction Temperature Range -55 to 150		$^{\circ}$	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance, Junction-to-Ambient		50	°C/W
R _{θJC}	Thermal Resistance Junction -Case		1.66	°C/W

N-Channel Enhancement Mode Field Effect Transistor

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250uA	100			V
В	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =20A			10	mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =15A			13.5	
V _G S(th)	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=250\mu A$	1.0		3.0	٧
I _{DSS}	Drain-Source Leakage Current	V _{DS} =100V ,V _{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±20V, V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V, I _D =20A		25		S
Qg	Total Gate Charge	V _{DS} =50V , I _D =20A 		24		nC
Q_{gs}	Gate-Source Charge			5		
Q_gd	Gate-Drain Charge			3		
$T_{d(on)}$	Turn-On Delay Time	V_{DS} =50V , V_{GS} =10V , R_L =2.5 Ω		8		
T _r	Rise Time			2		ne
$T_{d(off)}$	Turn-Off Delay Time			22		ns
T _f	Fall Time			3		
C _{iss}	Input Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		1900		
Coss	Output Capacitance			850		pF
C _{rss}	Reverse Transfer Capacitance			100		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Diode continuous forward current	V _G =V _D =0V , Force Current			50	Α
I _{SM}	Pulsed Source Current				150	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =28A , Tj=25℃			1.2	V

Note:

1.The EAS data shows Max. rating . The test condition is VdD=30V, VdS=10V, L=0.5mH, L=1.5A

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.