

Datasheet

Gas Discharge Tube (GDT)

Series / Models	SMD3216 Series
Product Code	10.12.00.XXXX
Version	A5
Date	2025-02-08
File Number	SP-GDT-001

SMD3216 Series

Version History

Version	Date	Page	Description	Author
A0	2015-11-19	/	Initial draft	George Hu
A1	2017-04-20	Page 4	Add 10/700µS electrical characteristics	George Hu
A2	2022-05-17	All	Use a new document layout	XianTao Jiang
А3	2023-11-02	Page 4	Update Electrical Characteristics	Xia Wu
A4	2024-08-19	Page 4	Update Electrical Characteristics	Xia Wu
A5	2025-02-08	All	Add cover and version history Delete some models Update Packaging Specifications	Xia Wu

Version: A5/2025-02-08

File Number: SP-GDT-001

SMD3216 Series

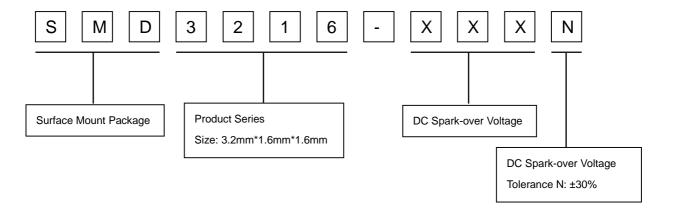
Description

Gas discharge tubes (GDTs) are generally in a high insulation resistance state, equivalent to an open circuit, which has almost no impact on the normal operation of the circuit. When transient overvoltage occurs in the circuit and the voltage amplitude exceeds the breakdown voltage of the GDT, the gas inside the GDT is ionized, causing the GDT to quickly conduct and limit the overvoltage to a lower level, thereby protecting electronic devices or circuit components connected in parallel from high voltage impact damage. After the overvoltage disappears, the GDT immediately returns to a high insulation resistance state, and the circuit resumes normal operation.

The SMD3216 series adopts a standard EIA1206 square GDT, which is currently the smaller size GDT in size on the market. The SMD3216 series GDT has ultra-low capacitance, can withstand high surge currents, and will not cause damage.

The SMD3216 series is suitable for installation on compact circuit boards and can be used to protect communication interfaces (such as Ethernet interfaces, RS-232 interfaces, etc.), prevent interface chip damage caused by induced lightning, electrostatic discharge, etc., and ensure stable and transmitted communication signals.

Electrical symbol


Features

- I Excellent response to fast rising transients
- I Stable breakdown voltage
- I GHz working frequency
- I 8/20µs Impulse current capability: 500A
- I Surface Mount package
- I Non-Radioactive
- I Ultra Low capacitance(<0.3pF) and insertion loss
- I Very small size: 3.2mm*1.6mm*1.6mm (EIA 1206)

Applications

- I Communication equipment
- I Test equipment
- I Data lines
- I Telecom SLIC protection
- I Broadband equipment
- I ADSL equipment, including ADSL2+
- I XDSL equipment
 - Satellite and CATV equipment
- I General telecom equipment

Part Number Code

SMD3216 Series

Electrical Characteristics

	DC Spark-over Voltage 1) 2)			Inculation	Capacitance @1 MHz	Glow Voltage @10mA	Arc Voltage @1A	Service life 4)	
								Impulse Discharge Current	Impulse Withstanding Voltage Capacity
Part Number	@100V/S	100V/μS 1K	1KV/µS					@8/20μS	@10/700μS, 40W
		Max	Max	Min	Max	Typical	Typical	±5 times	±5 times
	V	V	V	GΩ	pF	V	V	Α	KV
SMD3216-090N	90±30%	500	600	1	0.3	60	10	500	6
SMD3216-150N	150±30%	500	600	1	0.3	60	10	500	6
SMD3216-200N	200±30%	600	700	1	0.3	60	10	500	6
SMD3216-300N	300±30%	700	800	1	0.3	60	10	500	6
SMD3216-400N	400±30%	800	900	1	0.3	60	10	500	6
Glow to Arc transition	Glow to Arc transition Current								
Weight	Weight								
Operation temperature				40~+12	25°C				
Recommended storage ⁵⁾									
- Temperature .	- Temperature				°C				
- Humidity				45~+80	45~+80%				
- Period				≤ 2 yea	≤ 2 years				
Climatic category (IEC 60068-1)				40/125/	40/125/21				
Marking				. Without					
Surface treatment	Surface treatment				n plated				
Moisture sensitivity level 6			1		_				

Version: A5/2025-02-08

File Number: SP-GDT-001

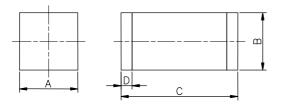
Terms and current waveforms in accordance with ITU-T K. 12, IEC61643-21 and IEC 61643-311.

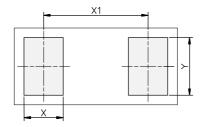
¹⁾ At delivery AQL 0.65 level II, DIN ISO 2859.

²⁾ In ionized mode.

 $^{^{3)}}$ Insulation Resistance Measuring Voltage: nominal voltage 90~150V at DC 50V, others at DC 100V.

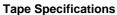
⁴⁾ Tests according to ITU-T K.12 and UL 497B.

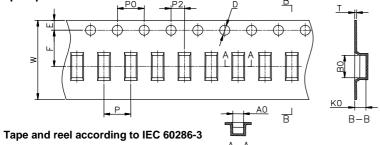

⁵⁾ Specified in terms of corrosion against tin plating.


⁶⁾ Tests according to JEDEC J-STD-020.

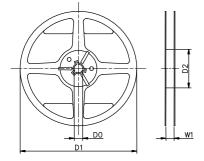
SMD3216 Series

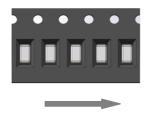
Dimensions





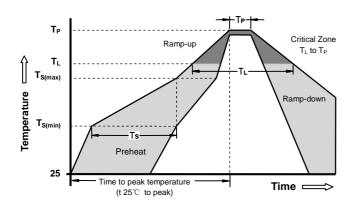
Recommended Soldering Pad Layout


Symbol	Millimeters	Inches
Α	1.6±0.2	0.063±0.008
В	1.6±0.2	0.063±0.008
С	3.2±0.3	0.126±0.012
D	0.3±0.1	0.012±0.004
х	1.3	0.051
X1	3.3	0.130
Y	1.8	0.071


Packaging Information

Reel Specifications

Direction of Unreeling


Symbol	Millimeters	Inches
w	12±0.3	0.472±0.012
A0	1.86±0.1	0.073±0.004
В0	3.6±0.1	0.142±0.004
K0	1.7±0.1	0.067±0.004
Р	4.0±0.1	0.157±0.004
F	5.5±0.1	0.217±0.004
E	1.75±0.1	0.069±0.004
D	1.5+0.1/-0.0	0.059+0.004/-0.0
P0	4±0.1	0.157±0.004
P2	2±0.1	0.079±0.004
Т	0.35±0.05	0.014±0.002
D0	13.3±0.15	0.524±0.006
D1	178±2	7.007±0.079
D2	60+1/-2	2.362+0.039/-0.079
W1	12.5±0.4	0.492±0.016

SMD3216 Series

	Reel	Inner Box
Size	178×12.5mm	180×184×64mm
Quantity	MPQ/MOQ: 1 reel=2,000pcs	1 Inner Box=4 reels=8,000pcs
Photos		

Soldering Parameters - Reflow Soldering (Surface Mount Devices)

Reflow Condi	Pb - Free assembly		
	-Temperature Min (T _{s(min)})	150°C	
Preheat	-Temperature Max (T _{s(max)})	200°C	
	- Time (min to max) (t _s)	60 -180 Seconds	
Average ramp to peak	up rate (Liquids Temp T _L)	3°C/second max	
T _{S(max)} to TL - I	T _{S(max)} to TL - Ramp-up Rate		
Reflow	- Temperature (T _L) (Liquids)	217°C	
	- Time (min to max) (t _s)	60 -150 Seconds	
Peak Tempera	ature (T _P)	260 +0/-5°C	
Time within 5° Temperature (°C of actual peak (t _p)	10 - 30 Seconds	

Surface mounted components (SMD) may exhibit a temporary increase in the DC spark-over voltage after the solder reflow process. The components will recover within 24 hours. There are no quality defects or changes in protection level during the temporary change of DC spark-over voltage.

SMD3216 Series

Terms and definitions

NO.	Item	Definitions			
1	Gas discharge tube(GDT)	A gap, or several gaps, in an enclosed discharge medium, other than air at atmospheric pressure, designed to protect apparatus or personnel, or both, from high transient voltages. Also referred to as "gas tube surge arrester".			
2	DC Spark-over Voltage The voltage at which the gas discharge tube sparks over with slowly increasing d.c. voltage.				
3	Impulse Spark-over Voltage	The highest voltage which appears across the terminals of a gas discharge tube in the period between the application of an impulse of given wave-shape and the time when current begins to flow.			
5	Arc voltage	Voltage drop across the GDT during arc current flow.			
6	Glow voltage	Peak value of voltage drop across the GDT when a glow current is flowing.			
7	Impulse discharge current 8/20µs	Current impulse with a nominal virtual front time of 8 μs and a nominal time to half-value of 20 μs.			
8 Alternating The rms value of an approximately sinusoidal alternating tube.		The rms value of an approximately sinusoidal alternating current passing through the gas discharge tube.			
9	Insulation Resistance	Insulation resistance shall be measured from each terminal to every other terminal of the GDT. The test is performed with DC50V when normal spark-over Voltage 70~150V, others with DC100V.			
10	Capacitance	The capacitance shall be measured once at 1 MHz between all terminals unless otherwise specified.			

Version: A5/2025-02-08

File Number: SP-GDT-001

SMD3216 Series

Cautions

- I Do not operate gas discharge tubes in power supply networks, whose maximum operating voltage exceeds the minimum spark-over voltage of the gas discharge tubes.
- I Gas discharge tubes may become hot in the event of longer periods of current stress (burn risk). In the event of overload the connectors may fail or the component may be destroyed.
- I Gas discharge tubes must be handled with care and must not be dropped.
- I Do not continue to use damaged gas discharge tubes.
- I The shown SMD pad dimensions represent a safe way to mount the arrester and are a recommendation of the manufacturer.

 During the reflow process it must be assured that no solder material reduces the insulation distance between the pads below the arrester.
- I SMD gas discharge tubes should be soldered within 24 month after shipment.
- I The electrical characteristics described in this datasheet are only typical characteristics, and all of these characteristics have been confirmed through testing and inspection. If the customer's usage requirements are different from this or have special requirements, please contact Ruilongyuan Electronics Co., Ltd. If protection failure or circuit damage occurs as a result, our company is not responsible for it.
- Ruilongyuan Electronics Co., Ltd. always strives to improve our products. Consequently, the products described in this datasheet may be updated from time to time, and the corresponding product specifications may also be updated accordingly. So, before or at the time of placing your order, please check to what extent the product descriptions and specifications contained in this publication are still applicable. Ruilongyuan Electronics Co., Ltd. still reserves the right to cease production and delivery of products. Consequently, we cannot guarantee that all products listed in this datasheet will always be available. The above provisions do not apply to individual agreements with customers for specific products.
- I Ruilongyuan Electronics Co., Ltd. models may have different product codes. Different product code representations are due to the use of different production processes, but do not affect their respective product specifications.

Version: A5/2025-02-08

File Number: SP-GDT-001