

JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.

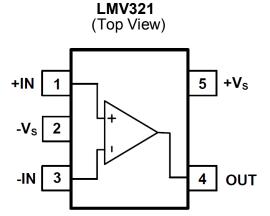
1MHz, 60µA, Rail-to-Rail I/O CMOS Operational Amplifier

LMV321

PRODUCT DESCRIPTION

The LMV321(single) are rail-to-rail input and output voltage feedback amplifier offering low cost. They have a wide input common-mode voltage range and output voltage swing, and take the minimum operating supply voltage down to 2.1V and the maximum recommended supply voltage is 5.5V. temperature range.

The LMV321 provide 1MHz bandwidth at a low current consumption of 60µA per amplifier. Very low input bias currents of 10pA enable LMV321 to be used for integrators, photodiode amplifiers, and piezoelectric sensors. Rail-to-rail inputs and outputs are useful to designers buffering ASIC in singlesupply systems. Applications for the series amplifiers include safety monitoring, portable equipment, battery and power supply control, and signal conditioning and interfacing for transducers in very low power systems.


APPLICATIONS

- ASIC Input or Output Amplifier
- Sensor Interface
- Piezo Electric Transducer Amplifier
- Medical Instrumentation
- Mobile Communication
- Audio Output
- Portable Systems
- Smoke Detectors
- Notebook PC
- PCMCIA Cards
- Battery –Powered Equipment
- DSP Interface

FEATURES

- Low Cost
- Rail-to-Rail Input and Output
- 0.8mV Typical VOS
- Unity Gain Stable
- Gain Bandwidth Product: 1MHz
- Very Low Input Bias Currents:
- Operates on 2.1V to 5.5V Supplies
- Input Voltage Range:-0.1V to +5.6V with VS = 5.5V
- Low Supply Current: <60μA
- Small Packaging: LMV321 Available in SOT-23-5L_o

PIN CONFIGURATIONS

LMV321 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

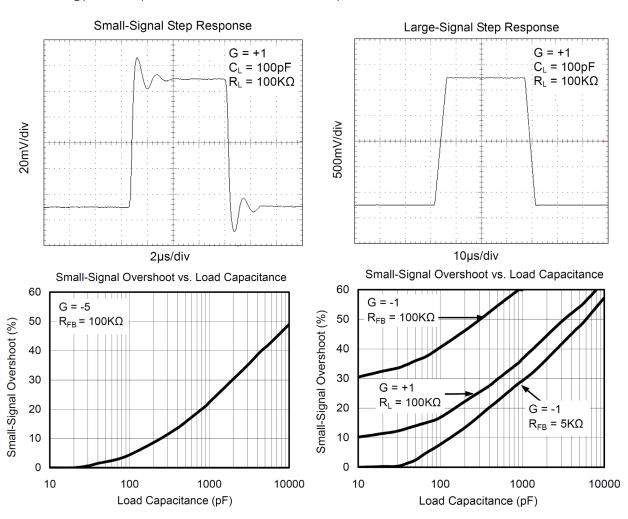
Lead Temperature Range (Soldering 10 sec)......260 ℃

NOTE:

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: Vs = +5V

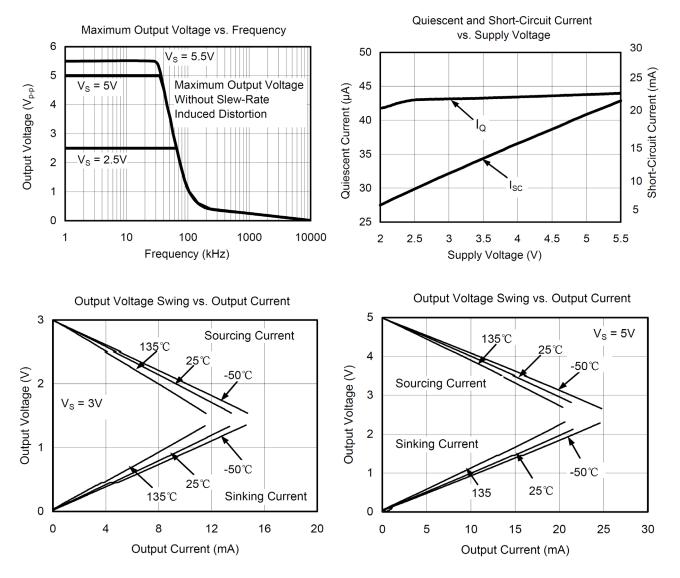
(At RL = $100K\Omega$ connected to Vs/2, and VOUT = Vs/2, unless otherwise noted.)


(ACTAL = TOOKS2 CONNECTED TO VS/2	CONDITIONS	LMV321					
PARAMETER		TYP	MIN/MAX OVER TEMPERATURE				
		+25℃	+25℃	0℃ to 75℃	UNITS	MIN/ MAX	
INPUT HARACTERISTICS							
Input Offset Voltage (VOS)		±0.8	±5	±6	mV	MAX	
Input Bias Current (IB)		10			pА	TYP	
Input Offset Current (IOS)		10			pA	TYP	
Common-Mode Voltage Range (VCM)	VS=5.5V	-0.1to+5.6			V	TYP	
Common-Mode Rejection Ratio (CMRR)	VS=5.5V, VCM=-0.1V to 4V	70	62	62	dB	MIN	
	VS= 5.5V, VCM=-0.1V to 5.6V	68	56	55	dB	MIN	
Open-Loop Voltage Gain (AOL)	RL= 5KΩ ,Vo=0.1V to 4.9V	80	70	70	dB	MIN	
	RL=100KΩ,Vo=0.035V to 4.965V	84	80	80	dB	MIN	
OUTPUT CHARACTERISTICS							
Output Voltage Swing from Rail	RL = 100KΩ	0.008			V	TYP	
	RL = 10KΩ	0.08			V	TYP	
Output Current (IOUT)		27	20	18.8	mA	MIN	
POWER SUPPLY							
Operating Voltage Range			2.1	2.5	V	MIN	
			5.5	5.5	V	MAX	
Power Supply Rejection Ratio (PSRR)	Vs =+2.5V to + 5.5V	82	60	58	dB	MIN	
	VCM= (-VS) + 0.5V						
Quiescent Current (IQ)	IOUT = 0	60	80	86	μA	MAX	

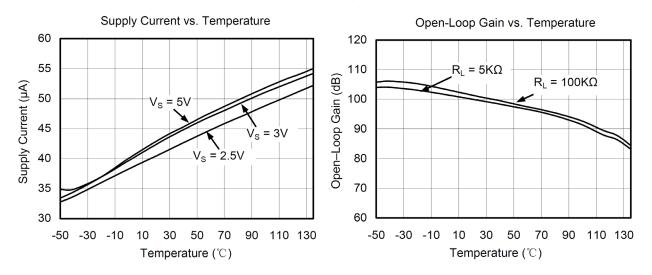
LMV321 ELECTRICAL CHARACTERISTICS

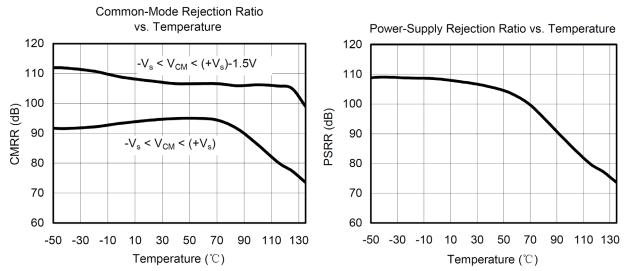
	CONDITIONS	LMV321				
PARAMETER		TYP	MIN/MAX OVER TEMPERATURE			
		+25℃	+25℃	0℃ to 75℃	UNITS	MIN/ MAX
DYNAMIC PERFORMANCE						
Gain-Bandwidth Product (GBP)	CL= 100pF	1			MHz	TYP
Slew Rate (SR)	G = +1, 2V Output Step	0.52			V/µs	TYP
Settling Time to 0.1% (tS)	G = +1, 2V Output Step	5.3			μs	TYP
Overload Recovery Time	VIN ·Gain = VS	2.6			μs	TYP
NOISE PERFORMANCE						
Voltage Noise Density (en)	f = 1kHz	27			n∖√ _{Hz}	TYP
	f = 10kHz	20			n√ _{Hz}	TYP

TYPICAL PERFORMANCE CHARACTERISTICS


At TA = +25 $^{\circ}$ C, VS = +5V, and RL = 100K Ω connected to Vs/2, unless otherwise noted.

LMV321 ELECTRICAL CHARACTERISTICS


TYPICAL PERFORMANCE CHARACTERISTICS


At TA = +25 $^{\circ}$ C, VS = +5V, and RL = 100K Ω connected to Vs/2, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS

At TA = $+25^{\circ}$ C, VS = +5V, and RL = 100K Ω connected to Vs/2, unless otherwise noted.

APPLICATION NOTES

Driving Capacitive Loads

The LMV321 can directly drive 250pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. Theisolation resistor RISO and the load capacitor CL form a zero to increase stability. The bigger the Riso resistor value, the more stable VOUT will be. Note that this method results in a loss of gain accuracy because Riso forms a voltage divider with the RLOAD.

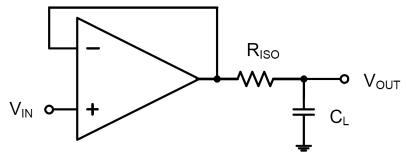


Figure 1. Indirectly Driving Heavy Capacitive Load

An improvement circuit is shown in Figure 2, It provides DC accuracy as well as AC stability. RF provides the DC accuracy by connecting the inverting signal with the output, CF and RIso serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

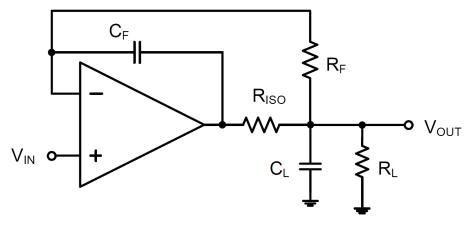


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

Typical Application

For no-buffer configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier's gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The LMV321 family operates from either a single $\pm 2.5 \text{V}$ to $\pm 5.5 \text{V}$ supply or dual $\pm 1.25 \text{V}$ to $\pm 2.75 \text{V}$ supplies. For single-supply operation, bypass the power supply VDD with a $0.1 \mu\text{F}$ ceramic capacitor which should be placed close to the VDD pin. For dual-supply operation, both the VDD and the VSS supplies should be bypassed to ground with separate $0.1 \mu\text{F}$ ceramic capacitors. $2.2 \mu\text{F}$ tantalum capacitor can be added for better performance.

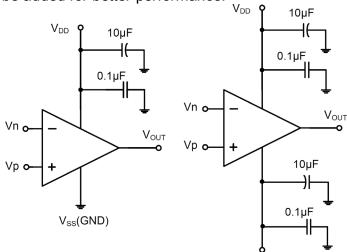


Figure 3. Amplifier with Bypass Capacitors

TYPICAL APPLICATION CIRCUITS

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistors ratios are equal (R4 / R3 = R2 / R1), then $VOUT = (Vp - Vn) \times R2 / R1 + VREF$.

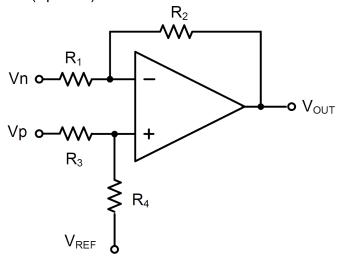


Figure 4. Differential Amplifier

Typical Application

Instrumentation Amplifier

The circuit in Figure 5 performs the same function as that in Figure 4 but with the high input impedance.

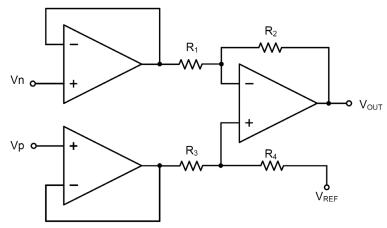


Figure 5. Instrumentation Amplifier

Low Pass Active Filter

The low pass filter shown in Figure 6 has a DC gain of (-R2 / R1) and the -3dB corner frequency is $1/2\pi R2C$. Make sure the filter is within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.

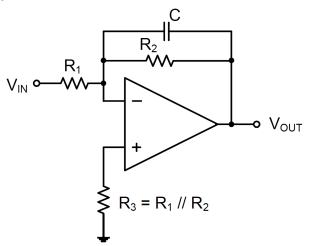
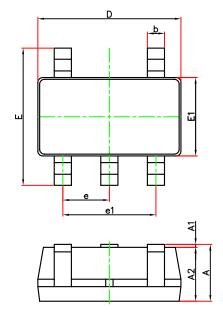
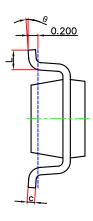
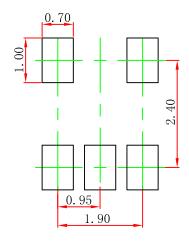




Figure 6. Low Pass Active Filter


SOT-23-5L Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	1.050	1.250	0.041	0.049	
A 1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	2.650	2.950	0.104	0.116	
E1	1.500	1.700	0.059	0.067	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

SOT-23-5L Suggested Pad Layout

Note:

- 1.Controlling dimension: in millimeters.2.General tolerance: ± 0.05mm.3.The pad layout is for reference purposes only.

DISCLAIMER

IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. JSCJ has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses JSCJ products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. JSCJ makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of JSCJ, this product shall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, automotive electronics, military facilities and aerospace. JSCJ shall not be responsible for casualties or property losses caused by abnormal use or application of this product.

Official Website: www.jscj-elec.com

Copyright © JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.