

TMUX1104

ZHCSIT9C - NOVEMBER 2018 - REVISED FEBRUARY 2024

TMUX1104 5V、低漏电流、4:1 精密多路复用器

1 特性

宽电源电压范围: 1.08V 至 5.5V

低漏电流:3pA 低电荷注入:1.5pC 低导通电阻: 2Ω

工作温度范围:-40°C 至+125°C

兼容 1.8V 逻辑电平

失效防护逻辑

轨到轨运行

双向信号路径

先断后合开关

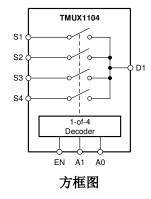
ESD 保护 HBM: 2000V

2 应用

- 超声波扫描仪
- 患者监护和诊断
- 血糖监测仪
- 光纤网络
- 光学测试设备
- 远程无线电单元
- 有线网络
- 数据采集系统
- ATE 测试设备
- 工厂自动化和工业控制
- 可编程逻辑控制器 (PLC)
- 模拟输入模块
- 声纳接收器
- 电池监控系统

REF S1 Op Am $\stackrel{>}{\leq}$ Op Amp Precision ADC **Current Sensing** Photo 1.8V Logic LED Detector **Analog Inputs** TMUX1104 简化版原理图

3 说明


TMUX1104 是精密互补金属氧化物半导体 (CMOS) 多 路复用器 (MUX)。TMUX1104 提供单通道 4:1 配置。 1.08V 至 5.5V 的宽工作电源电压范围使该器件非常适 用于从医疗设备到工业系统的各种应用。该器件可在源 极 (Sx) 和漏极 (D) 引脚上支持从 GND 到 V_{DD} 范围的 双向模拟和数字信号。所有逻辑输入均具有兼容 1.8V 逻辑的阈值,当器件在有效电源电压范围内运行时,这 些阈值可实现 TTL 和 CMOS 逻辑兼容性。失效防护逻 辑电路允许先在控制引脚上施加电压,然后在电源引脚 上施加电压,从而保护器件免受潜在的损害。

TMUX1104 是精密开关和多路复用器器件系列的一部 分。此类器件具有非常低的导通和关断漏电流以及较低 的电荷注入,因此可用于高精度测量应用。5nA的低 电源电流和小型封装选项使其可用于便携式应用。

封装信息

器件型号	封装 ⁽¹⁾	封装尺寸⁽²⁾
TMUX1104	DGS (VSSOP , 10)	3mm × 4.9mm
	DQA (USON , 10)	2.5mm × 1mm

- 有关更多信息,请参阅节 11 (1)
- 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。

Table of Contents

1	特性1
2	应用1
3	说明1
	Pin Configuration and Functions3
	Specifications4
	5.1 Absolute Maximum Ratings4
	5.2 ESD Ratings
	5.3 Recommended Operating Conditions4
	5.4 Thermal Information5
	5.5 Electrical Characteristics (V _{DD} = 5V ±10 %)5
	5.6 Electrical Characteristics (V _{DD} = 3.3V ±10 %)
	5.7 Electrical Characteristics (V _{DD} = 1.8V ±10 %)9
	5.8 Electrical Characteristics (V _{DD} = 1.2V ±10 %) 11
	5.9 Typical Characteristics13
6	Parameter Measurement Information16
	6.1 On-Resistance
	6.2 Off-Leakage Current
	6.3 On-Leakage Current17
	6.4 Transition Time
	6.5 Break-Before-Make18
	6.6 t _{ON(EN)} and t _{OFF(EN)}
	6.7 Charge Injection19
	6.8 Off Isolation19

20
20
21
21
21
<mark>23</mark>
23
24
24
24
25
26
28
28
28
28
28
28
28
28
29

4 Pin Configuration and Functions

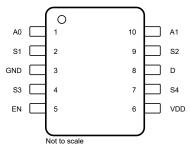


图 4-1. DGS Package, 10-Pin VSSOP (Top View)

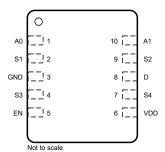


图 4-2. DQA Package, 10-Pin USON (Top View)

表 4-1. Pin Functions

Р	PIN TYPE(1)		DESCRIPTION
NAME	NO.	1 ITE	DESCRIPTION
A0	1	I	Address line 0. Controls the switch configuration as shown in 表 7-1.
S1	2	I/O	Source pin 1. Can be an input or output.
GND	3	Р	Ground (0V) reference
S3	4	I/O	Source pin 3. Can be an input or output.
EN	5	I	Active high logic enable. When this pin is low, all switches are turned off. When this pin is high, the A[1:0] logic inputs determine which switch is turned on.
VDD	6	Р	Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1μF to 10μF between V _{DD} and GND.
S4	7	I/O	Source pin 4. Can be an input or output.
D	8	I/O	Drain pin. Can be an input or output.
S2	9	I/O	Source pin 2. Can be an input or output.
A1	10	I	Address line 1. Controls the switch configuration as shown in 表 7-1.

(1) I = input, O = output, I/O = input and output, P = power

English Data Sheet: SCDS392

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2) (3)

		MIN	MAX	UNIT
V_{DD}	Supply voltage	- 0.5	6	V
V _{SEL} or V _{EN}	Logic control input pin voltage (EN, A0, A1)	- 0.5	6	V
I _{SEL} or I _{EN}	Logic control input pin current (EN, A0, A1)	- 30	30	mA
V _S or V _D	Source or drain voltage (Sx, D)	- 0.5	V _{DD} +0.5	V
I _S or I _{D (CONT)}	Source or drain continuous current (Sx, D)	I _{DC} ± 10 % ⁽⁴⁾	I _{DC} ± 10 % ⁽⁴⁾	mA
I _S or I _{D (PEAK)}	Source and drain peak current: (1 ms period max, 10% duty cycle maximum) (Sx, D)	I _{peak} ± 10 % ⁽⁴⁾	I _{peak} ± 10 % ⁽⁴⁾	mA
T _{stg}	Storage temperature	- 65	150	°C
P _{tot}	Total power dissipation ⁽⁵⁾ (6)		500	mW
TJ	Junction temperature		150	°C

- (1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) Refer to Recommended Operating Conditions for I_{DC} and I_{Peak} ratings
- (5) For DGS(VSSOP) package: Ptot derates linearly above TA=53°C by 5.16mW/°C
- (6) For DQA(USON) package: Ptot derates linearly above TA=63°C by 5.78mW/°C

5.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±2000	V	
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±750	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT	
V_{DD}	Positive power supply voltage		1.08	5.5	V	
V _S or V _D	Signal path input/output voltage (source or de	rain pin) (Sx, D)	0	V_{DD}	V	
V _{SEL} or V _{EN}	Logic control input pin voltage		0	5.5	V	
T _A	Ambient temperature		- 40	125	°C	
		Tj = 25°C		150		
		Tj = 85°C		120		
IDC	Continuous current through switch	Tj = 125°C		60	mA	
		Tj = 130°C		50		

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TMUX1104*

5.3 Recommended Operating Conditions (续)

over operating free-air temperature range (unless otherwise noted)

			MIN NOM	MAX	UNIT
		Tj = 25°C	300		mA
	duty cycle maximum)	Tj = 85°C	300		mA
I _{peak}		Tj = 125°C	180		mA
		Tj = 130°C	160		mA

5.4 Thermal Information

		TMU		
	THERMAL METRIC ⁽¹⁾	DGS (VSSOP)	DQA (USON)	UNIT
		10 PINS	10 PINS	
R _{θ JA}	Junction-to-ambient thermal resistance	193.9	173.0	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	83.1	99.7	°C/W
R ₀ JB	Junction-to-board thermal resistance	116.5	73.5	°C/W
Ψ JT	Junction-to-top characterization parameter	22.0	8.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	114.6	73.0	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.5 Electrical Characteristics (V_{DD} = 5V ±10 %)

at T_A = 25°C, V_{DD} = 5V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
ANALO	G SWITCH		1				
		$V_S = 0V \text{ to } V_{DD}$	25°C		2	4	Ω
R_{ON}	On-resistance	I _{SD} = 10 mA	- 40°C to +85°C			4.5	Ω
		Refer to On-Resistance	- 40°C to +125°C			4.9	Ω
		V _S = 0V to V _{DD}	25°C		0.13		Ω
ΔR_{ON}	On-resistance matching between channels	I _{SD} = 10 mA	- 40°C to +85°C			0.4	Ω
		Refer to On-Resistance	- 40°C to +125°C			0.5	Ω
R _{ON} FLAT	On-resistance flatness	$V_S = 0V$ to V_{DD} $I_{SD} = 10$ mA Refer to On-Resistance	25°C		0.85		Ω
			- 40°C to +85°C			1.6	Ω
			- 40°C to +125°C			1.6	Ω
		V_{DD} = 5V Switch Off V_{D} = 4.5V / 1.5V V_{S} = 1.5V / 4.5V Refer to Off-Leakage Current	25°C	- 0.08	±0.005	0.08	nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾		- 40°C to +85°C	- 0.3		0.3	nA
·5(OFF)	Source on rounding controlle		- 40°C to +125°C	- 0.9		0.9	nA
		V _{DD} = 5V	25°C	- 0.1	±0.01	0.1	nA
I _{D(OFF)}	Drain off leakage current ⁽¹⁾	Switch Off V _D = 4.5V / 1.5V	- 40°C to +85°C	- 0.75		0.75	nA
-Б(ОГГ)	g	V _S = 1.5V / 4.5V Refer to Off-Leakage Current	- 40°C to +125°C	- 3.5		3.5	nA
		V _{DD} = 5V	25°C	- 0.025	±0.003	0.025	nA
$I_{D(ON)}$ $I_{S(ON)}$	Channel on leakage current	Switch On $V_D = V_S = 2.5V$ Refer to On-Leakage Current	- 40°C to +85°C	- 0.3		0.3	nA
·9(ON)			- 40°C to +125°C	- 0.95		0.95	nA

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

5.5 Electrical Characteristics (V_{DD} = 5V ±10 %) (续)

at $T_A = 25$ °C, $V_{DD} = 5V$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
		V _{DD} = 5V	25°C	- 0.1	±0.01	0.1	nA
I _{D(ON)} I _{S(ON)}	Channel on leakage current	Switch On $V_D = V_S = 4.5V / 1.5V$	- 40°C to +85°C	- 0.75		0.75	nA
'S(ON)		Refer to On-Leakage Current	- 40°C to +125°C	- 3.5		3.5	nA
LOGIC	INPUTS (EN, A0, A1)						
V _{IH}	Input logic high		- 40°C to +125°C	1.49		5.5	V
V _{IL}	Input logic low		- 40°C to +125°C	0		0.87	V
I _{IH} I _{IL}	Input leakage current		25°C		±0.005		μΑ
I _{IH} I _{IL}	Input leakage current		- 40°C to +125°C			±0.05	μΑ
C _{IN}	Logic input capacitance		25°C		1		pF
C _{IN}	Logic input capacitance		- 40°C to +125°C			2	pF
POWER	RSUPPLY						
loo	V _{DD} supply current	Logic inputs = 0V or 5.5V	25°C		0.005		μΑ
I _{DD}	У ДД зарргу заполе	Logio inputo 0 v oi 0.0 v	- 40°C to +125°C			1	μA
DYNAM	IIC CHARACTERISTICS						
		V _S = 3V	25°C		14		ns
t _{TRAN}	Transition time between channels	$R_L = 200\Omega$, $C_L = 15 pF$	- 40°C to +85°C			18	ns
		Refer to Transition Time	- 40°C to +125°C			19	ns
		V _S = 3V	25°C		8		ns
t _{OPEN} (BBM)	Break before make time	R _L = 200Ω, C _L = 15 pF Refer to Break-Before-Make	- 40°C to +85°C	1			ns
			- 40°C to +125°C	1			ns
		$V_S = 3V$ $R_L = 200\Omega$, $C_L = 15 \text{ pF}$ Refer to tON(EN) and tOFF(EN)	25°C		12		ns
t _{ON(EN)}	Enable turn-on time		- 40°C to +85°C			17	ns
			- 40°C to +125°C			18	ns
		V _S = 3V	25°C		5		ns
t _{OFF(EN)}	Enable turn-off time	$R_L = 200\Omega$, $C_L = 15 pF$	- 40°C to +85°C			8	ns
		Refer to tON(EN) and tOFF(EN)	- 40°C to +125°C			9	ns
Q_{C}	Charge Injection	V_S = 1V R_S = 0 Ω , C_L = 1 nF Refer to Charge Injection	25°C		1.5		рС
0	Off localities	R _L = 50 Ω, C _L = 5 pF f = 1 MHz Refer to Off Isolation	25°C		- 65		dB
O _{ISO}	Off Isolation	R _L = 50 Ω, C _L = 5 pF f = 10 MHz Refer to Off Isolation	25°C		- 45		dB
v	Connectable	R _L = 50 Ω, C _L = 5 pF f = 1 MHz Refer to Crosstalk	25°C		- 65		dB
X _{TALK}	Crosstalk	R _L = 50 Ω, C _L = 5 pF f = 10 MHz Refer to Crosstalk	25°C		- 45		dB
BW	Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ Refer to Bandwidth	25°C		155		MHz
C _{SOFF}	Source off capacitance	f = 1 MHz	25°C		6		pF

Product Folder Links: *TMUX1104*English Data Sheet: SCDS392

5.5 Electrical Characteristics (V_{DD} = 5V ±10 %) (续)

at $T_A = 25$ °C, $V_{DD} = 5V$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
C _{DOFF}	Drain off capacitance	f = 1 MHz	25°C		28		pF
C _{SON} C _{DON}	On capacitance	f = 1 MHz	25°C		35		pF

⁽¹⁾ When V_{S} is 4.5V, V_{D} is 1.5V, and vice versa.

提交文档反馈

5.6 Electrical Characteristics (V_{DD} = 3.3V ±10 %)

at T_A = 25°C, V_{DD} = 3.3V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
ANALO	G SWITCH						
		$V_S = 0V \text{ to } V_{DD}$	25°C		3.7	8.8	Ω
R _{ON}	On-resistance	I _{SD} = 10mA	- 40°C to +85°C			9.5	Ω
K _{ON}		Refer to On-Resistance	- 40°C to +125°C			9.8	Ω
		$V_S = 0V \text{ to } V_{DD}$	25°C		0.13		Ω
∆ R _{ON}	On-resistance matching between channels	I _{SD} = 10mA	- 40°C to +85°C			0.4	Ω
	Giamos	Refer to On-Resistance	- 40°C to +125°C			0.5	Ω
		$V_S = 0V \text{ to } V_{DD}$	25°C		1.9		Ω
R _{ON}	On-resistance flatness	I _{SD} = 10mA	- 40°C to +85°C		2		Ω
FLAI	On-resistance flatness	Refer to On-Resistance	- 40°C to +125°C		2.2		Ω
		V _{DD} = 3.3V	25°C	- 0.05	±0.001	0.05	nA
lovore)	Source off leakage current ⁽¹⁾	Switch Off $V_D = 3V / 1V$	- 40°C to +85°C	- 0.1		0.1	nA
I _{S(OFF)}	Source on leakage current	V _S = 1V / 3V Refer to Off-Leakage Current	- 40°C to +125°C	- 0.5		0.5	nA
		V _{DD} = 3.3V	25°C	- 0.1	±0.005	0.1	nA
I _{D(OFF)}	Drain off leakage current ⁽¹⁾	Switch Off V _D = 3V / 1V	- 40°C to +85°C	- 0.5		0.5	nA
·D(OFF)	Drain on loakago carronk	V _S = 1V / 3V Refer to Off-Leakage Current	- 40°C to +125°C	- 2		2	nA
		V _{DD} = 3.3V	25°C	- 0.1	±0.005	0.1	nA
I _{D(ON)}	Channel on leakage current	Switch On $V_D = V_S = 3V / 1V$	- 40°C to +85°C	- 0.5		0.5	nA
Is(ON)		Refer to On-Leakage Current	- 40°C to +125°C	- 2		2	nA
LOGIC	INPUTS (EN, A0, A1)						
V _{IH}	Input logic high		- 40°C to +125°C	1.35		5.5	V
V _{IL}	Input logic low		- 40°C to +125°C	0		0.8	V
I _{IH} I _{IL}	Input leakage current		25°C		±0.005		μΑ
I _{IH} I _{IL}	Input leakage current		- 40°C to +125°C			±0.05	μΑ
C _{IN}	Logic input capacitance		25°C		1		pF
C _{IN}	Logic input capacitance		- 40°C to +125°C			2	pF
POWER	RSUPPLY						
I	V _{DD} supply current	Logic inputs = 0V or 5.5V	25°C		0.005		μΑ
I _{DD}	V _{DD} supply culterit	Logic inputs – 0 v or 5.5 v	- 40°C to +125°C			1	μΑ
DYNAN	IIC CHARACTERISTICS						
		V _S = 2V	25°C		15		ns
t _{TRAN}	Transition time between channels	$R_L = 200\Omega$, $C_L = 15pF$	- 40°C to +85°C			21	ns
		Refer to Transition Time	- 40°C to +125°C			22	ns
		V _S = 2V	25°C		9		ns
t _{OPEN}	Break before make time	$R_{L} = 200\Omega$, $C_{L} = 15pF$	- 40°C to +85°C	1			ns
(BBM)		Refer to Break-Before-Make	- 40°C to +125°C	1			ns
		V _S = 2V	25°C		14		ns
t _{ON(EN)}	Enable turn-on time	$R_L = 200\Omega$, $C_L = 15pF$	- 40°C to +85°C			21	ns
	Znasio tam on timo	Refer to tON(EN) and tOFF(EN)	- 40°C to +125°C			21	ns

5.6 Electrical Characteristics (V_{DD} = 3.3V ±10 %) (续)

at $T_A = 25$ °C, $V_{DD} = 3.3V$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
		V _S = 2V	25°C		7		ns
t _{OFF(EN)}	Enable turn-off time	$R_L = 200\Omega$, $C_L = 15pF$	- 40°C to +85°C			9	ns
		Refer to tON(EN) and tOFF(EN)	- 40°C to +125°C			10	ns
Q _C	Charge Injection	V_S = 1V R_S = 0 Ω , C_L = 1nF Refer to Charge Injection	25°C		- 1.5		рС
0	Off Isolation	$R_L = 50 \Omega$, $C_L = 5pF$ f = 1MHz Refer to Off Isolation	25°C		- 65		dB
O _{ISO} Off Isolation	On isolation	$R_L = 50 \Omega$, $C_L = 5pF$ f = 10MHz Refer to Off Isolation	25°C		- 45		dB
V	Crosstalk	$R_L = 50 \Omega$, $C_L = 5pF$ f = 1MHz Refer to Crosstalk	25°C		- 65		dB
X _{TALK}	Ciossian	$R_L = 50 \Omega$, $C_L = 5pF$ f = 10MHz Refer to Crosstalk	25°C		- 45		dB
BW	Bandwidth	$R_L = 50 \Omega$, $C_L = 5pF$ Refer to Bandwidth	25°C		155		MHz
C _{SOFF}	Source off capacitance	f = 1MHz	25°C		6		pF
C _{DOFF}	Drain off capacitance	f = 1MHz	25°C		28		pF
C _{SON} C _{DON}	On capacitance	f = 1MHz	25°C		35		pF

⁽¹⁾ When V_S is 3V, V_D is 1V, and vice versa.

5.7 Electrical Characteristics (V_{DD} = 1.8V ±10 %)

at T_A = 25°C, V_{DD} = 1.8V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
ANALC	G SWITCH						
		$V_S = 0V \text{ to } V_{DD}$	25°C		40		Ω
R_{ON}	On-resistance	I _{SD} = 10mA	- 40°C to +85°C			80	Ω
		Refer to On-Resistance	- 40°C to +125°C			80	Ω
			25°C		0.4		Ω
ΔR_{ON}	On-resistance matching between channels		- 40°C to +85°C			1.5	Ω
			- 40°C to +125°C			1.5	Ω
		V _{DD} = 1.98V	25°C	- 0.05	±0.003	0.05	nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch Off $V_D = 1.62V / 1V$ $V_S = 1V / 1.62V$ Refer to Off-Leakage Current	- 40°C to +85°C	- 0.1		0.1	nA
'S(OFF)	Course on leakage current		- 40°C to +125°C	- 0.5		0.5	nA
I _{D(OFF)}		$V_{DD} = 1.98V$ Switch Off $V_{D} = 1.62V / 1V$ $V_{S} = 1V / 1.62V$ Refer to Off-Leakage Current	25°C	- 0.1	±0.005	0.1	nΑ
	Drain off leakage current ⁽¹⁾		- 40°C to +85°C	- 0.5		0.5	nA
	Drain on loakago cultonic		- 40°C to +125°C	- 2		2	nA

提交文档反馈

5.7 Electrical Characteristics (V_{DD} = 1.8V ±10 %) (续)

at T_A = 25°C, V_{DD} = 1.8V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN TYP	MAX	UNIT
		V _{DD} = 1.98V	25°C	- 0.1 ±0.005	0.1	nA
D(ON) S(ON)	Channel on leakage current	Switch On $V_D = V_S = 1.62V / 1V$	- 40°C to +85°C	- 0.5	0.5	nA
·3(ON)		Refer to On-Leakage Current	- 40°C to +125°C	- 2	2	nA
LOGIC	INPUTS (EN, A0, A1)					
V _{IH}	Input logic high		- 40°C to +125°C	1.07	5.5	V
V _{IL}	Input logic low		- 40°C to +125°C	0	0.68	V
I _{IH} I _{IL}	Input leakage current		25°C	±0.005	i	μΑ
I _{IH} I _{IL}	Input leakage current		- 40°C to +125°C		±0.05	μΑ
C _{IN}	Logic input capacitance		25°C	1		pF
C _{IN}	Logic input capacitance		- 40°C to +125°C		2	pF
POWER	SUPPLY					
I _{DD}	V _{DD} supply current	Logic inputs = 0V or 5.5V	25°C	0.001		μA
טטי	УДД зарргу запътк	Logio inputo 0 v oi o.o v	- 40°C to +125°C		0.85	μA
DYNAM	IC CHARACTERISTICS					
		V _S = 1V	25°C	28		ns
t _{TRAN}	Transition time between channels	/	- 40°C to +85°C		44	ns
		Refer to Transition Time	- 40°C to +125°C		44	ns
t _{OPEN}	Break before make time	V _S = 1V	25°C	16	i	ns
		$R_L = 200\Omega$, $C_L = 15pF$	- 40°C to +85°C	1		ns
(DDIVI)		Refer to Break-Before-Make	- 40°C to +125°C	1		ns
		V _S = 1V	25°C	25	i	ns
t _{ON(EN)}	Enable turn-on time	$R_L = 200\Omega$, $C_L = 15pF$	- 40°C to +85°C		41	ns
		Refer to tON(EN) and tOFF(EN)	- 40°C to +125°C		41	ns
		V _S = 1V	25°C	13	1	ns
t _{OFF(EN)}	Enable turn-off time	$R_L = 200\Omega$, $C_L = 15pF$	- 40°C to +85°C		23	ns
		Refer to tON(EN) and tOFF(EN)	- 40°C to +125°C		23	ns
$Q_{\mathbb{C}}$	Charge Injection	V_S = 1V R_S = 0 Ω , C_L = 1nF Refer to Charge Injection	25°C	- 0.5	i	рС
0	061-1-6	R _L = 50 Ω, C _L = 5pF f = 1MHz Refer to Off Isolation	25°C	- 65	i	dB
O _{ISO}	Off Isolation	R _L = 50 Ω, C _L = 5pF f = 10MHz Refer to Off Isolation	25°C	- 45	i	dB
	0	R _L = 50 Ω, C _L = 5pF f = 1MHz Refer to Crosstalk	25°C	- 65	·	dB
X _{TALK}	Crosstalk	R _L = 50 Ω, C _L = 5pF f = 10MHz Refer to Crosstalk	25°C	- 45		dB
BW	Bandwidth	$R_L = 50 \Omega$, $C_L = 5pF$ Refer to Bandwidth	25°C	140)	MHz
C _{SOFF}	Source off capacitance	f = 1MHz	25°C	6	<u> </u>	pF

Product Folder Links: *TMUX1104*English Data Sheet: SCDS392

5.7 Electrical Characteristics (V_{DD} = 1.8V ±10 %) (续)

at $T_A = 25$ °C, $V_{DD} = 1.8$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
C _{DOFF}	Drain off capacitance	f = 1MHz	25°C		28		pF
C _{SON} C _{DON}	On capacitance	f = 1MHz	25°C		35		pF

⁽¹⁾ When V_{S} is 1.62V, V_{D} is 1V, and vice versa.

5.8 Electrical Characteristics ($V_{DD} = 1.2V \pm 10 \%$)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
ANALO	G SWITCH						
		$V_S = 0V \text{ to } V_{DD}$	25°C		70		Ω
R _{ON}	On-resistance	I _{SD} = 10mA	- 40°C to +85°C			105	Ω
		Refer to On-Resistance	- 40°C to +125°C			105	Ω
		$V_S = 0V \text{ to } V_{DD}$	25°C		0.4		Ω
ΔR_{ON}	On-resistance matching between channels	I _{SD} = 10mA	- 40°C to +85°C			1.5	Ω
	ond moio	Refer to On-Resistance	- 40°C to +125°C			1.5	Ω
		V _{DD} = 1.32V	25°C	- 0.05	±0.003	0.05	nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch Off V _D = 1V / 0.8V	- 40°C to +85°C	- 0.1		0.1	nA
(- ,		V _S = 0.8V / 1V Refer to Off-Leakage Current	- 40°C to +125°C	- 0.5		0.5	nA
		V _{DD} = 1.32V	25°C	- 0.1	±0.005	0.1	nA
I _{D(OFF)}	Drain off leakage current ⁽¹⁾	Switch Off V _D = 1V / 0.8V	- 40°C to +85°C	- 0.5		0.5	nA
Б(011)	Ü	V _S = 0.8V / 1V Refer to Off-Leakage Current	- 40°C to +125°C	- 2		2	nA
I _{D(ON)} Channel on leakage current		V _{DD} = 1.32V	25°C	- 0.1	±0.005	0.1	nA
	Switch On $V_D = V_S = 1V / 0.8V$	- 40°C to +85°C	- 0.5		0.5	nA	
'S(ON)	S(ON)	Refer to On-Leakage Current	- 40°C to +125°C	- 2		2	nA
LOGIC	INPUTS (EN, A0, A1)						
V _{IH}	Input logic high		- 40°C to +125°C	0.96		5.5	V
V _{IL}	Input logic low		- 40°C to +125°C	0		0.36	V
I _{IH} I _{IL}	Input leakage current		25°C		±0.005		μΑ
I _{IH} I _{IL}	Input leakage current		- 40°C to +125°C			±0.05	μΑ
C _{IN}	Logic input capacitance		25°C		1		pF
C _{IN}	Logic input capacitance		- 40°C to +125°C			2	pF
POWER	SUPPLY		-				
	V gunnly gurrent	Logio inputo = 0\/ or 5 5\/	25°C		0.001		μΑ
I _{DD}	V _{DD} supply current	Logic inputs = 0V or 5.5V	- 40°C to +125°C			0.7	μΑ
DYNAN	IIC CHARACTERISTICS						
		V _S = 1V	25°C		55		ns
t _{TRAN}	Transition time between channels	nannels $R_L = 200\Omega$, $C_L = 15pF$	- 40°C to +85°C			190	ns
		Refer to Transition Time	- 40°C to +125°C			190	ns

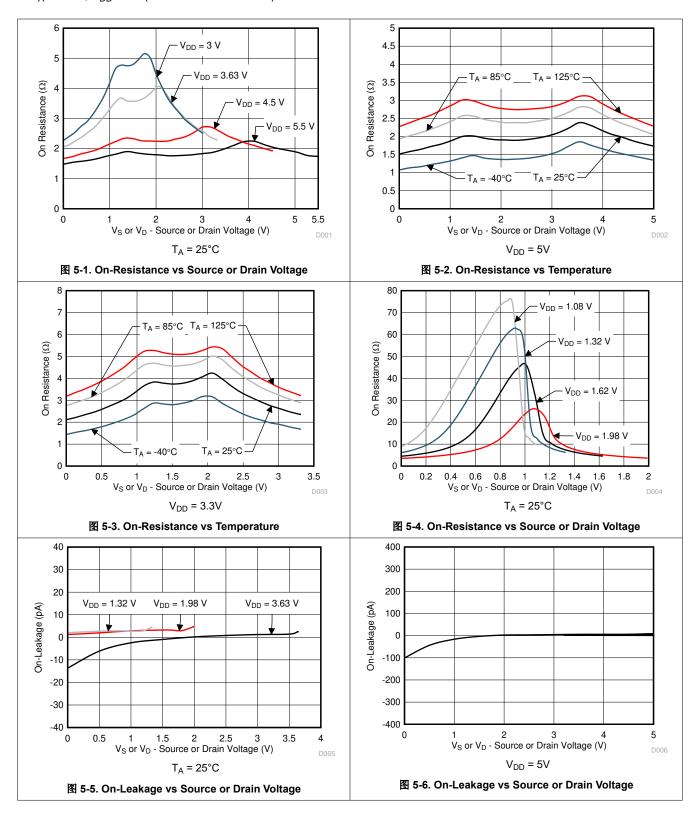
Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

5.8 Electrical Characteristics (V_{DD} = 1.2V ±10 %) (续)

PARAMETER		TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
		V _S = 1V	25°C		28		ns
t _{OPEN}	Break before make time	$R_L = 200\Omega$, $C_L = 15pF$	- 40°C to +85°C	1			ns
(BBM)		Refer to Break-Before-Make	- 40°C to +125°C	1			ns
		V _S = 1V	25°C		50		ns
t _{ON(EN)}	Enable turn-on time	$R_L = 200\Omega$, $C_L = 15pF$	- 40°C to +85°C			175	ns
		Refer to tON(EN) and tOFF(EN)	- 40°C to +125°C			175	ns
		V _S = 1V	25°C		35		ns
t _{OFF(EN)}	Enable turn-off time	$R_L = 200\Omega$, $C_L = 15pF$	- 40°C to +85°C			135	ns
		Refer to tON(EN) and tOFF(EN)	- 40°C to +125°C			135	ns
Q _C	Charge Injection	$V_S = 1V$ $R_S = 0\Omega$, $C_L = 1nF$ Refer to Charge Injection	25°C		- 0.5		рС
0	Off Isolation	$R_L = 50 \Omega$, $C_L = 5pF$ f = 1MHz Refer to Off Isolation	25°C		- 65		dB
O _{ISO}	Oii isolation	$R_L = 50 \Omega$, $C_L = 5pF$ f = 10MHz Refer to Off Isolation	25°C		- 45		dB
V	Crosstalk	$R_L = 50 \Omega$, $C_L = 5pF$ f = 1MHz Refer to Crosstalk	25°C		- 65		dB
X _{TALK}	Crosstaik	$R_L = 50 \Omega$, $C_L = 5pF$ f = 10MHz Refer to Crosstalk	25°C		- 45		dB
BW	Bandwidth	$R_L = 50 \Omega$, $C_L = 5pF$ Refer to Bandwidth	25°C		125		MHz
C _{SOFF}	Source off capacitance	f = 1MHz	25°C		7		pF
C _{DOFF}	Drain off capacitance	f = 1MHz	25°C		32		pF
C _{SON} C _{DON}	On capacitance	f = 1MHz	25°C		40		pF

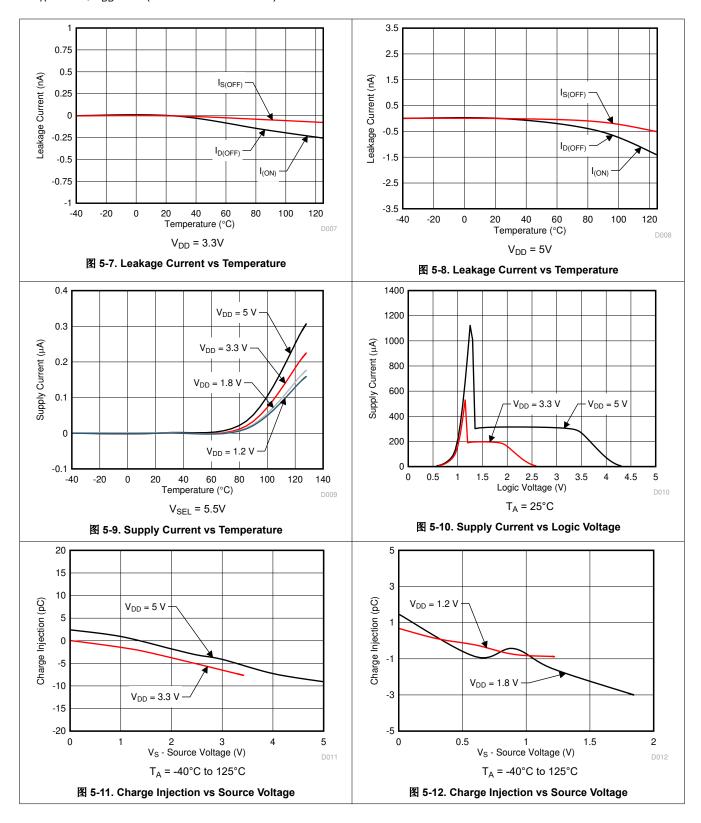
⁽¹⁾ When V_S is 1V, V_D is 0.8V, and vice versa.


12

Product Folder Links: TMUX1104

5.9 Typical Characteristics

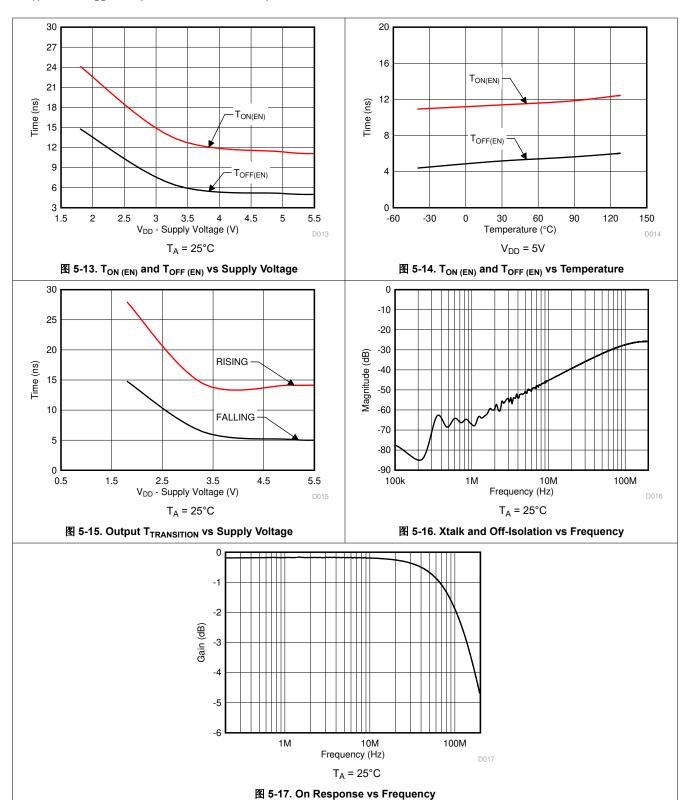
at T_A = 25°C, V_{DD} = 5V (unless otherwise noted)



Product Folder Links: TMUX1104

5.9 Typical Characteristics (continued)

at T_A = 25°C, V_{DD} = 5V (unless otherwise noted)



Product Folder Links: TMUX1104

5.9 Typical Characteristics (continued)

at $T_A = 25$ °C, $V_{DD} = 5V$ (unless otherwise noted)

Product Folder Links: TMUX1104

6 Parameter Measurement Information

6.1 On-Resistance

The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. The measurement setup used to measure R_{ON} is shown in 86-1. Voltage (V) and current (I_{SD}) are measured using this setup, and R_{ON} is computed with $R_{ON} = V / I_{SD}$:

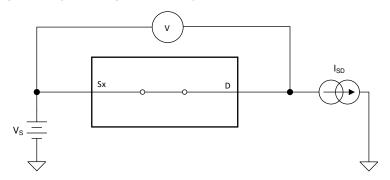


图 6-1. On-Resistance Measurement Setup

6.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

- 1. Source off-leakage current
- 2. Drain off-leakage current

Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol $I_{S(OFF)}$.

Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol $I_{D(OFF)}$.

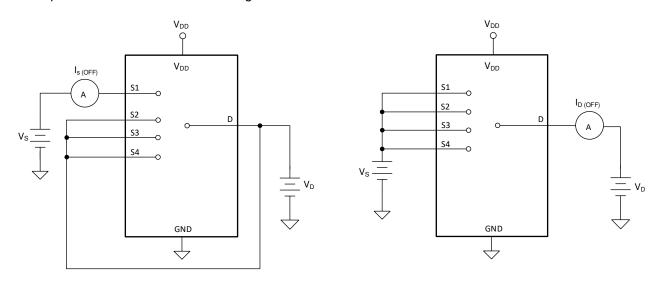


图 6-2. Off-Leakage Measurement Setup

6.3 On-Leakage Current

Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is on. This current is denoted by the symbol $I_{S(ON)}$.

Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is on. This current is denoted by the symbol $I_{D(ON)}$.

Either the source pin or drain pin is left floating during the measurement. \boxtimes 6-3 shows the circuit used for measuring the on-leakage current, denoted by $I_{S(ON)}$ or $I_{D(ON)}$.

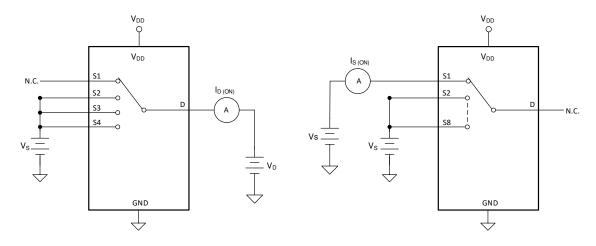


图 6-3. On-Leakage Measurement Setup

6.4 Transition Time

Transition time is defined as the time taken by the output of the device to rise or fall 10% after the address signal has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. 8 6-4 shows the setup used to measure transition time, denoted by the symbol treansition.

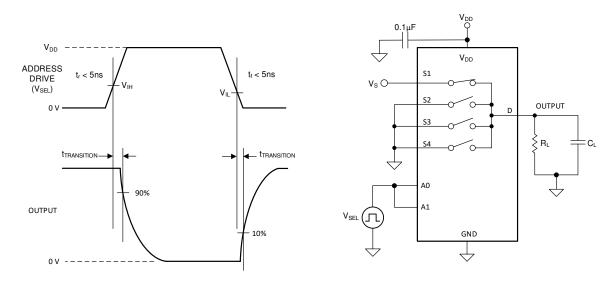


图 6-4. Transition-Time Measurement Setup

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

17

Product Folder Links: TMUX1104

6.5 Break-Before-Make

Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is switching. The output first breaks from the on-state switch before making the connection with the next on-state switch. The time delay between the break and the make is known as break-before-make delay.

8 6-5 shows the setup used to measure break-before-make delay, denoted by the symbol t_{OPEN(BBM)}.

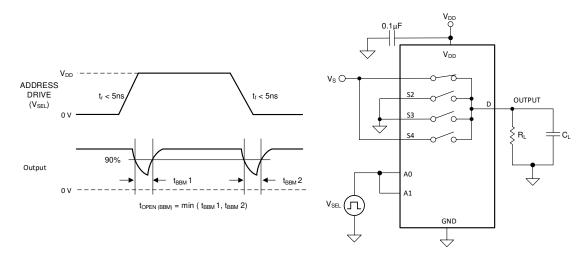


图 6-5. Break-Before-Make Delay Measurement Setup

6.6 t_{ON(EN)} and t_{OFF(EN)}

Turn-on time is defined as the time taken by the output of the device to rise to 10% after the enable has risen past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. \(\begin{align*} \exists 6-6 \) shows the setup used to measure turn-on time, denoted by the symbol t_{ON(EN)}.

Turn-off time is defined as the time taken by the output of the device to fall to 90% after the enable has fallen past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. \ \ 6-6 shows the setup used to measure turn-off time, denoted by the symbol t_{OFF(EN)}.

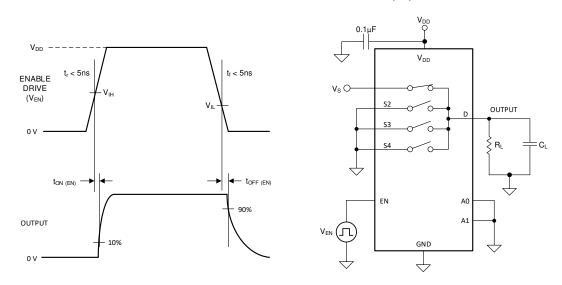


图 6-6. Turn-On and Turn-Off Time Measurement Setup

Product Folder Links: TMUX1104

6.7 Charge Injection

The TMUX1104 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted by the symbol Q_C . 86-7 shows the setup used to measure charge injection from source (Sx) to drain (D).

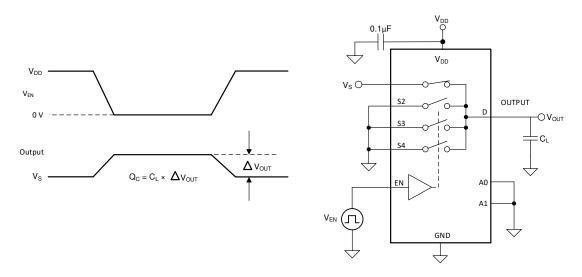


图 6-7. Charge-Injection Measurement Setup

6.8 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the source pin (Sx) of an off-channel. 86-8 shows the setup used to measure, and the equation used to calculate off isolation.

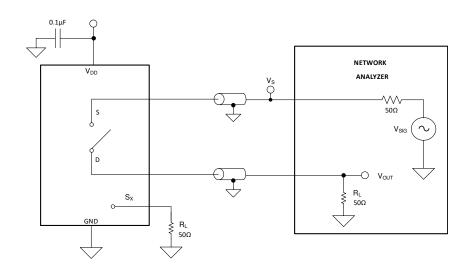


图 6-8. Off Isolation Measurement Setup

English Data Sheet: SCDS392

Off Isolation =
$$20 \cdot Log\left(\frac{V_{OUT}}{V_{S}}\right)$$
 (1)

6.9 Crosstalk

Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied at the source pin (Sx) of an on-channel. 86-9 shows the setup used to measure, and the equation used to calculate crosstalk.

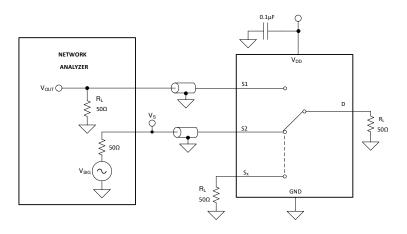


图 6-9. Crosstalk Measurement Setup

Channel-to-Channel Crosstalk =
$$20 \cdot Log\left(\frac{V_{OUT}}{V_{S}}\right)$$
 (2)

6.10 Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by less than 3dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 86-10 shows the setup used to measure bandwidth.

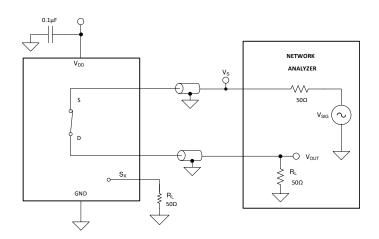


图 6-10. Bandwidth Measurement Setup

7 Detailed Description

7.1 Functional Block Diagram

The TMUX1104 is an 4:1, 1-channel (single-ended) multiplexer or demultiplexer. Each input is turned on or turned off based on the state of the address lines and enable pin.

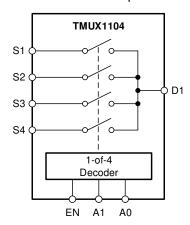


图 7-1. TMUX1104 Functional Block Diagram

7.2 Feature Description

7.2.1 Bidirectional Operation

The TMUX1104 conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each channel has very similar characteristics in both directions and supports both analog and digital signals.

7.2.2 Rail to Rail Operation

The valid signal path input/output voltage for TMUX1104 ranges from GND to V_{DD}.

7.2.3 1.8V Logic Compatible Inputs

The TMUX1104 has 1.8V logic compatible control for all logic control inputs. The logic input thresholds scale with supply but still provide 1.8V logic control when operating at 5.5V supply voltage. 1.8V logic level inputs allows the TMUX1104 to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. For more information on 1.8V logic implementations, refer to Simplifying Design with 1.8V logic Muxes and Switches

7.2.4 Fail-Safe Logic

The TMUX1104 supports Fail-Safe Logic on the control input pins (EN, A0, A1) allowing for operation up to 5.5V, regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic feature allows the select pins of the TMUX1104 to be ramped to 5.5V while $V_{DD} = 0V$. Additionally, the feature enables operation of the TMUX1104 with $V_{DD} = 1.2V$ while allowing the select pins to interface with a logic level of another device up to 5.5V.

Product Folder Links: TMUX1104

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

7.2.5 Ultra-low Leakage Current

The TMUX1104 provides extremely low on-leakage and off-leakage currents. The TMUX1104 is capable of switching signals from high source-impedance inputs into a high input-impedance op amp with minimal offset error because of the ultra-low leakage currents.

▼ 7-2 shows typical leakage currents of the TMUX1104 versus temperature.

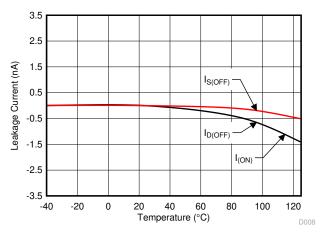


图 7-2. Leakage Current vs Temperature

7.2.6 Ultra-low Charge Injection

The TMUX1104 has a transmission gate topology, as shown in 🖺 7-3. Any mismatch in the stray capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.

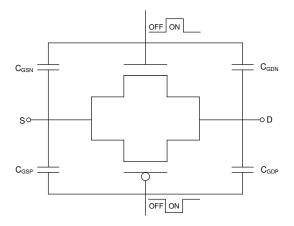


图 7-3. Transmission Gate Topology

Product Folder Links: TMUX1104

Copyright © 2024 Texas Instruments Incorporated

The TMUX1104 has special charge-injection cancellation circuitry that reduces the source-to-drain charge injection to 1.5pC at $V_S = 1V$ as shown in \mathbb{Z} 7-4.

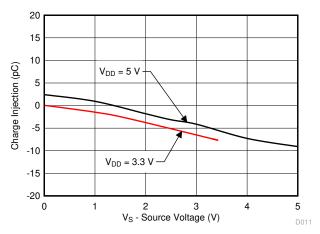


图 7-4. Charge Injection vs Source Voltage

7.3 Device Functional Modes

When the EN pin of the TMUX1104 is pulled high, one of the switches is closed based on the state of the address lines. When the EN pin is pulled low, all the switches are in an open state regardless of the state of the address lines. The control pins can be as high as 5.5V.

7.4 Truth Tables

表 7-1 provides the truth tables for the TMUX1104.

表 7-1. TMUX1104 Truth Table

EN	A1	A0	Selected Input Connected To Drain (D) Pin
0	X ⁽¹⁾	X ⁽¹⁾	All channels are off
1	0	0	S1
1	0	1	S2
1	1	0	S3
1	1	1	S4

Product Folder Links: TMUX1104

X denotes do not care.

提交文档反馈

8 Application and Implementation

备注

以下应用部分中的信息不属于 TI 元件规格, TI 不担保其准确性和完整性。TI 的客户负责确定元件是否适合其用途,以及验证和测试其设计实现以确认系统功能。

8.1 Application Information

The TMUX11xx family offers ultra-low input/output leakage currents and low charge injection. These devices operate up to 5.5V, and offer true rail-to-rail input and output of both analog and digital signals. The TMUX1104 has a low on-capacitance which allows faster settling time when multiplexing inputs in the time domain. These features make the TMUX11xx devices a family of precision, high-performance switches and multiplexers for low-voltage applications.

8.2 Typical Application

8-1 shows a 16-bit, 4 input, multiplexed, data-acquisition system. This example is typical in industrial applications that require low distortion for precision measurements. The circuit uses the ADS8864, a 16-bit, 400kSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along with a precision amplifier, and a 4 input mux.

图 8-1. Multiplexing Signals to External ADC

Product Folder Links: TMUX1104

Copyright © 2024 Texas Instruments Incorporated

8.2.1 Design Requirements

For this design example, use the parameters listed in 表 8-1.

表 8-1. Design Parameters

PARAMETERS	VALUES	
Supply (V _{DD})	3.3V	
I/O signal range	0V to V _{DD} (Rail to Rail)	
Control logic thresholds	1.8V compatible	

8.2.2 Detailed Design Procedure

The TMUX1104 can be operated without any external components except for the supply decoupling capacitors. If the desired power-up state is disabled, the enable pin should have a weak pull-down resistor and be controlled by the MCU through the GPIO. All inputs being muxed to the ADC must fall within the recommend operating conditions of the TMUX1104, including signal range and continuous current. For this design with a supply of 3.3V the signal range can be 0V to 3.3V, and the max continuous current can be 30mA.

The design example highlights a multiplexed data-acquisition system for highest system linearity and fast settling. The overall system block diagram is shown in 88-1. The circuit is a multichannel data-acquisition signal chain consisting of an input low-pass filter, mux, mux output buffer, SAR ADC driver, and a reference buffer. The architecture provides a cost-effective solution for fast sampling of multiple channels using a single ADC.

8.2.3 Application Curve

The TMUX1104 is capable of switching signals from high source-impedance inputs into a high input-impedance op amp with minimal offset error because of the ultra-low leakage currents.

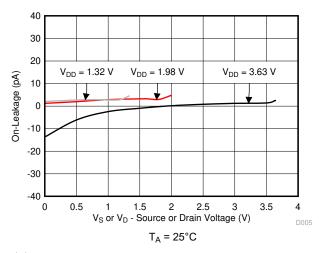


图 8-2. On-Leakage vs Source or Drain Voltage

8.3 Power Supply Recommendations

The TMUX1104 operates across a wide supply range of 1.08V to 5.5V. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices.

Power-supply bypassing improves noise margin and prevents switching noise propagation from the V_{DD} supply to other components. Good power-supply decoupling is important to achieve optimum performance. For improved supply noise immunity, use a supply decoupling capacitor ranging from $0.1~\mu$ F to $10~\mu$ F from V_{DD} to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low

Product Folder Links: TMUX1104

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground planes.

8.4 Layout

8.4.1 Layout Guidelines

When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self – inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. 8 8-3 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

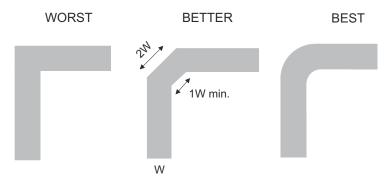


图 8-3. Trace Example

Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points; through-hole pins are not recommended at high frequencies.

⊗ 8-4 shows an example of a PCB layout with the TMUX1104. Some key considerations are as follows:

- Decouple the V_{DD} pin with a 0.1µF capacitor, placed as close to the pin as possible. Ensure that the capacitor voltage rating is sufficient for the V_{DD} supply.
- · Keep the input lines as short as possible.
- Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SCDS392

8.4.2 Layout Example

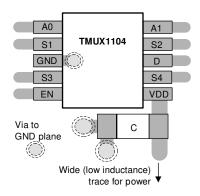


图 8-4. TMUX1104 Layout Example

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit.
- Texas Instruments, Improve Stability Issues with Low CON Multiplexers.
- Texas Instruments, Simplifying Design with 1.8V logic Muxes and Switches.
- Texas Instruments, Eliminate Power Sequencing with Powered-off Protection Signal Switches.
- Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers.
- Texas Instruments, QFN/SON PCB Attachment.
- Texas Instruments, Quad Flatpack No-Lead Logic Packages.

9.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

9.3 支持资源

TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

9.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

9.6 术语表

TI术语表

本术语表列出并解释了术语、首字母缩略词和定义。

10 Revision History

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision B (July 2019) to Revision C (February 2024)	Page
Updated Is or Id (Continuous Current) values	4
Added Ipeak values to Recommended Operating Conditions table	
Changes from Revision A (December 2018) to Revision B (July 2019)	Page
Changes from Revision A (December 2018) to Revision B (July 2019) • 删除了器件信息表中 DQA 封装的产品预发布注释	

Product Folder Links: TMUX1104

Copyright © 2024 Texas Instruments Incorporated

4	Texas Instruments						
www.ti.com.cn							

	Changes from Revision *	(November 2	2018) to Revision	A (December 2018)
--	-------------------------	-------------	-------------------	-------------------

将文档状态从*预告信息*更改为*量产混合*数据......1

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: TMUX1104

29

English Data Sheet: SCDS392

www.ti.com 2-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
TMUX1104DGSR	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	NIPDAUAG SN	Level-1-260C-UNLIM	-40 to 125	1D7
TMUX1104DQAR	Active	Production	USON (DQA) 10	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	104

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

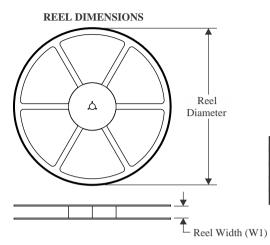
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

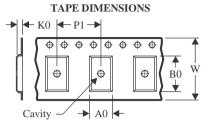
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

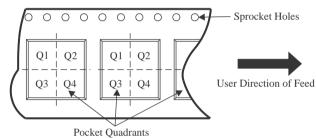
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

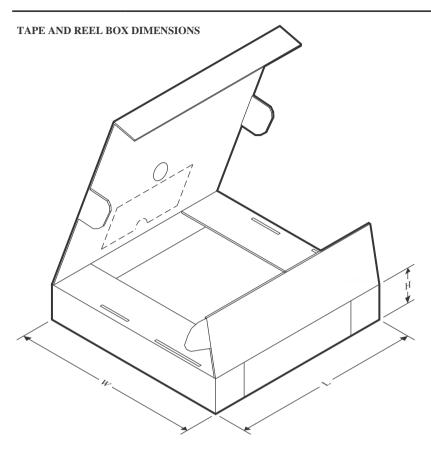
PACKAGE MATERIALS INFORMATION

www.ti.com 5-Nov-2024


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

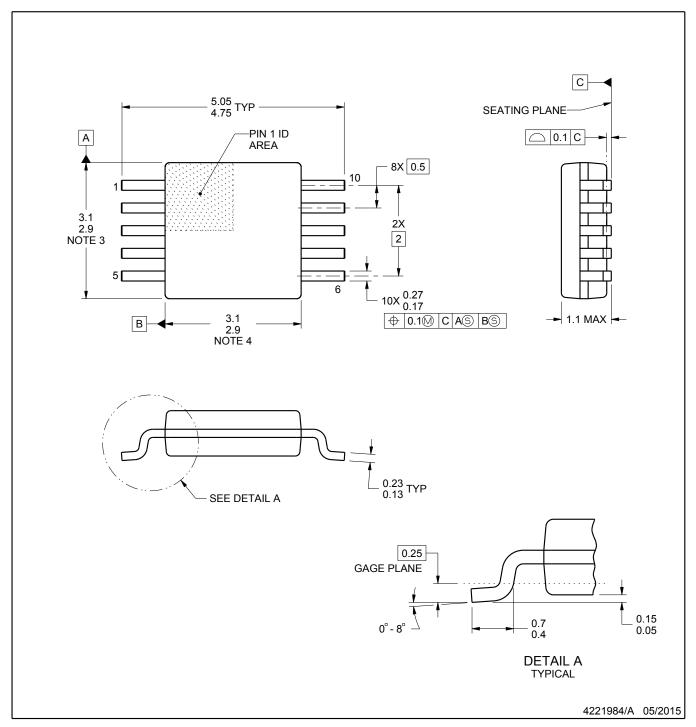


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMUX1104DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
TMUX1104DQAR	USON	DQA	10	3000	180.0	9.5	1.18	2.68	0.72	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Nov-2024

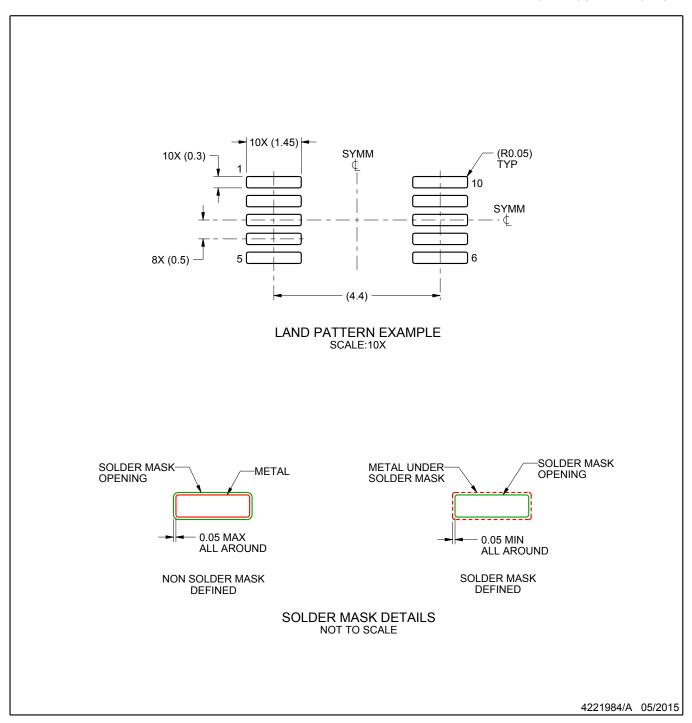


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMUX1104DGSR	VSSOP	DGS	10	2500	366.0	364.0	50.0
TMUX1104DQAR	USON	DQA	10	3000	189.0	185.0	36.0

SMALL OUTLINE PACKAGE

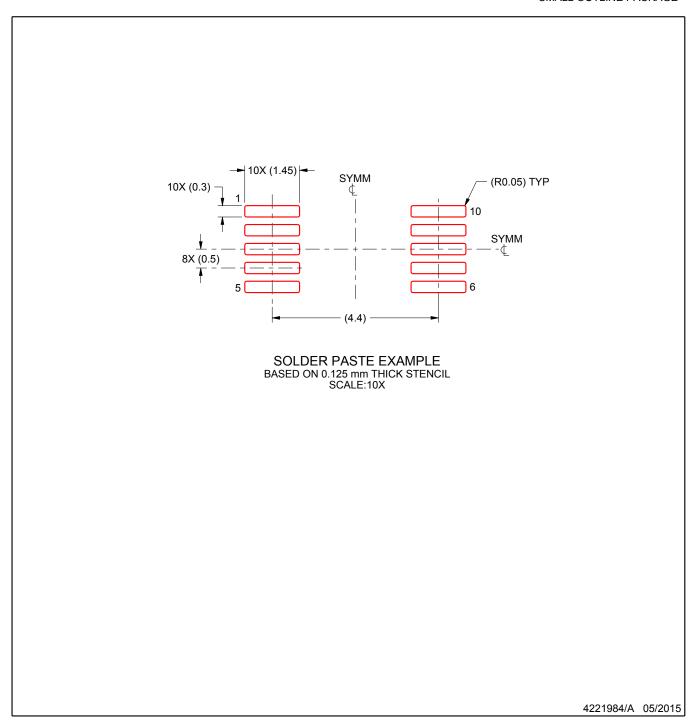
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

SMALL OUTLINE PACKAGE

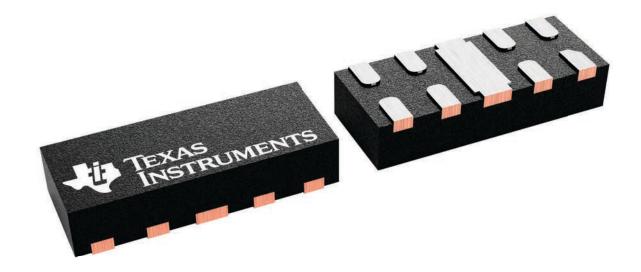

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

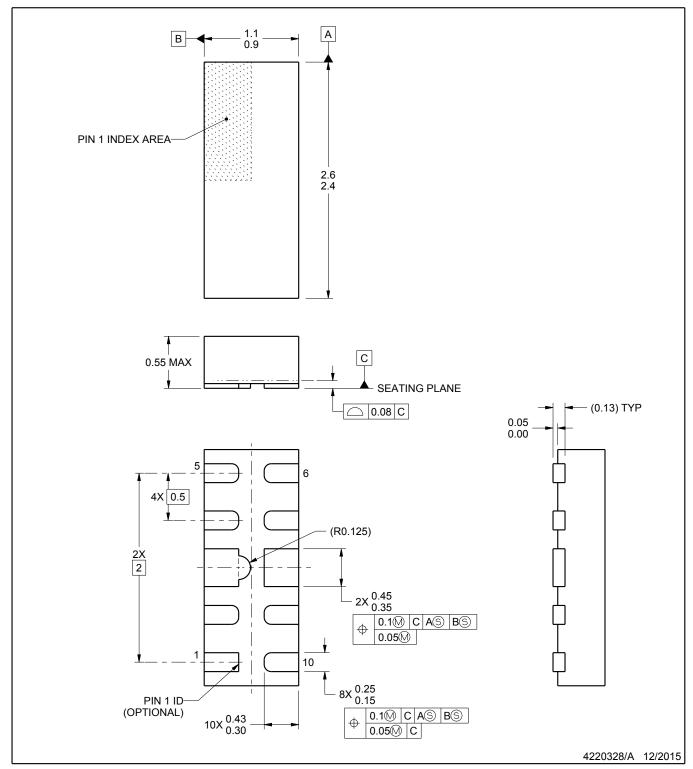
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

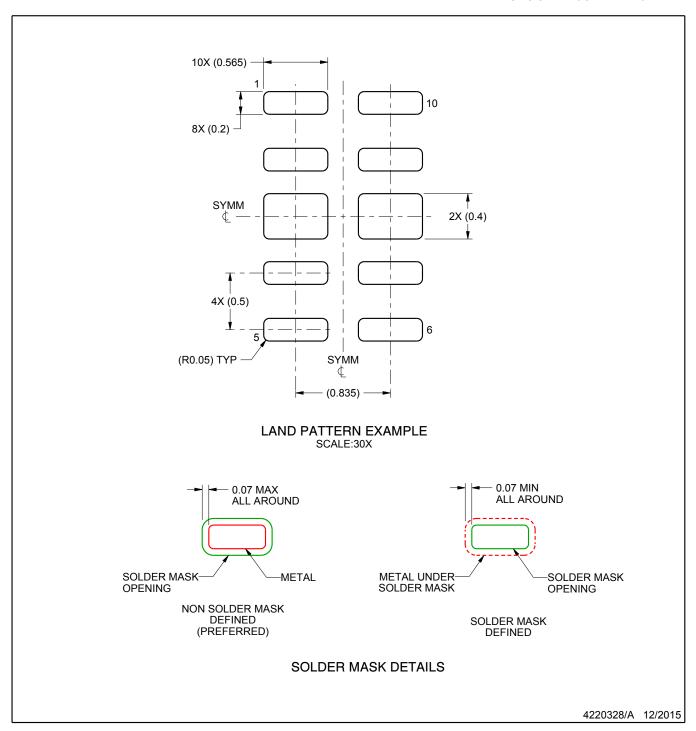

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

1 x 2.5, 0.5 mm pitch


PLASTIC SMALL OUTLINE - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

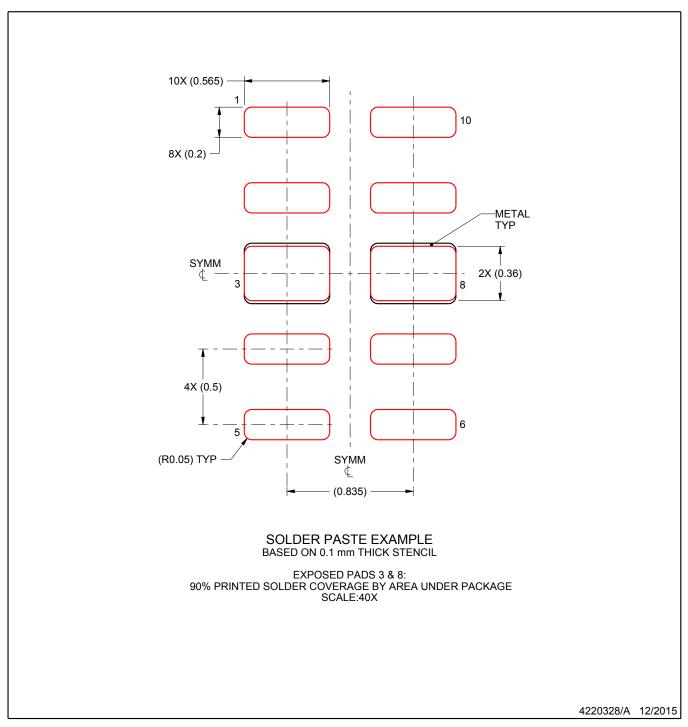
PLASTIC SMALL OUTLINE - NO LEAD


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司