

SGM330A Quad, Wide-Bandwidth SPDT Video Analog Switch

GENERAL DESCRIPTION

The SGM330A is a quad, bidirectional, single-pole/double-throw (SPDT) CMOS video analog switch (Mux/DeMux) designed to operate at a single +5V supply. This 2-channel multiplexer/demultiplexer is recommended for both RGB and composite video switching applications. The video switch can be driven from a current output RAMDAC or voltage output composite video source.

Wide bandwidth (500MHz), low on-resistance (12Ω), and low crosstalk make it suitable for high-frequency and other applications. Also this device has exceptionally high current capability which is far greater than most analog switches offered today.

The SGM330A offers a high-performance, low-cost solution to switch between video sources. It is specified -40°C to +85°C temperature range. The SGM330A is available in Green SO-16, TSSOP-16 and QSOP-16 packages.

APPLICATIONS

Personal Video Recorders
Terrestrial Set-Top Boxes
Hard Disk Recorders
DVD Players
Game Consoles
Digital VCRs
Desktop Video Editors
Audio and Video Switching

FEATURES

• Wide Bandwidth: 500MHz

• Low On-Resistance: 12Ω (TYP)

• Low Crosstalk: -60dB at 10MHz (TYP)

Single Power Operation: +5V

Fast Switching Time

• Rail-to-Rail Operation

Typical Power Consumption (I_{CC} = 0.1μA)

TTL/CMOS Compatible

Micro Size Packages

SO-16

TSSOP-16

QSOP-16

PIN CONFIGURATIONS (TOP VIEW)

PACKAGE/ORDERING INFORMATION

ORDERING NUMBER	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	PACKAGE OPTION
SGM330A-YS/TR	SO-16	-40℃ to +85℃	SGM330A-YS	Tape and Reel, 2500
SGM330A-YQS/TR	QSOP-16	-40℃ to +85℃	SGM330A-YQS	Tape and Reel, 3000
SGM330A-YTS/TR	TSSOP-16	-40℃ to +85℃	SGM330A-YTS	Tape and Reel, 3000

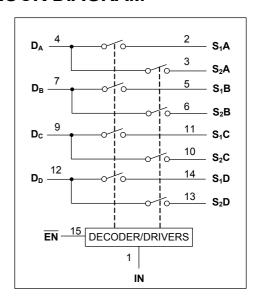
ABSOLUTE MAXIMUM RATINGS

Supply Voltage to Ground Potential (Inputs & V ₊ only)				
	0.3V to 6V			
Supply Voltage to Ground Potential (Ouputs	& D only)			
	0.3V to 6V			
DC Input Voltage	0.3V to 6V			
Operating Temperature Range	40°C to +85°C			
Junction Temperature	150°C			
Storage Temperature	65°C to +150°C			
Package Thermal Resistance @ T _A = 25°C				
SO-16, θ _{JA}	82°C/W			
TSSOP-16, θ _{JA}	100°C/W			
QSOP-16, θ _{JA}	103°C/W			
Lead Temperature (soldering, 10s)	260°C			
ESD Susceptibility				
HBM	V0008			
MM	400V			

NOTE

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN DESCRIPTION


NAME	FUNCTION	
S ₁ A, S ₁ B, S ₁ C, S ₁ D S ₂ A, S ₂ B, S ₂ C, S ₂ D	Analog video I/O	
IN	Select input	
EN	Switch-enable input	
D_A , D_B , D_C , D_D	Analog video I/O	
GND	Ground	
V ₊	Power supply	

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

BLOCK DIAGRAM

FUNCTION TABLE

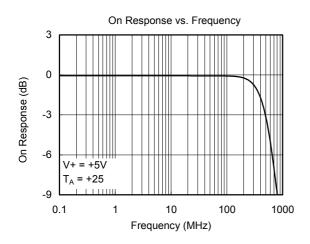
EN	IN	ON Switch		
0	0	S_1A , S_1B , S_1C , S_1D		
0	1	S_2A , S_2B , S_2C , S_2D		
1	Х	Disabled		

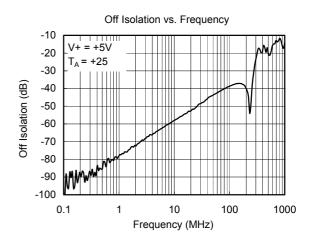
SGM330A

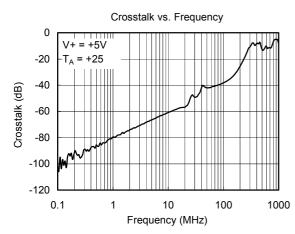
ELECTRICAL CHARACTERISTICS

(At V_+ = +5V, T_A = +25°C. unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DC CHARACTERISTICS							
On-Resistance	Ron	$0V \le V_{S1} \text{ or } V_{S2} \le V_{+}, I_D = 13\text{mA}$		12	18	Ω	
Input High Voltage	V _{IH}		2			V	
Input Low Voltage	V _{IL}				0.6	V	
Input High Current	I _{IH}	$V_{+} = 5.5V$, V_{IN} and $V_{EN} = V_{+}$			±1	μA	
Input Low Current	I _{IL}	$V_{+} = 5.5V$, V_{IN} and $V_{EN} = 0V$			±1	μA	
Analog Output Leakage Current	Io	$V_{+} = 5.5V$, V_{S1} or $V_{S2} = 3.3V/0.3V$, $V_{D} = 0.3V/3.3V$			±1	μA	
Clamp Diode Voltage	V _{IK}	I _{IN} = -18mA		-1		V	
DYNAMIC CHARACTERISTICS							
Turn-On Time	T _{ON}	$R_L = 75\Omega$, $C_L = 20pF$ (Figure 1)		25		ns	
Turn-Off Time	T _{OFF}	$R_L = 75\Omega$, $C_L = 20pF$ (Figure 1)		13		ns	
Off Isolation	O _{IRR}	R_L = 150Ω, f = 10MHz (Figure 5)		-58		dB	
Channel-to-Channel Crosstalk	X _{TALK}	R_{IN} = 10 Ω , R_L = 150 Ω , f = 10MHz (Figure 4)		-60		dB	
–3dB Bandwidth	BW	R_L = 150Ω (Figure 3)		500		MHz	
Input/Enable Capacitance	C _{IN}	f = 1MHz		4		pF	
Switch OFF Capacitance	C _{OFF}	f = 1MHz		4		pF	
Switch ON Capacitance	C _{ON}	f = 1MHz		8		pF	
Differential Gain	D _G	$R_L = 150\Omega$, f = 3.58MHz (Figure 2)		0.5		%	
Differential Phase	D _P	$R_L = 150\Omega$, f = 3.58MHz (Figure 2)		0.03		0	
POWER REQUIREMENTS							
Power Supply Current	I _{CC}	$V_{+} = +5.5V$, V_{IN} and $V_{EN} = 5V/0V$		0.1	20	μA	
Supply Current per Input @ TTL HIGH	Δ_{ICC}	$V_{+} = +5.5V$, V_{IN} or $V_{EN} = 3.4V$			300	μA	

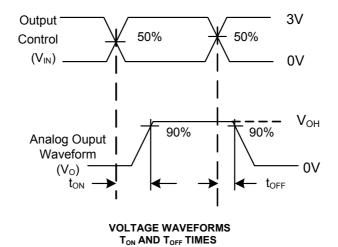

Specifications subject to changes without notice.


SGM330A


PARAMETER DEFINITIONS

PARAMETER	DESCRIPTION
R _{on}	Resistance between source and drain with switch in the ON state
Io	Output leakage current measured at S1, S2, and D with the switch OFF
V _{IN}	Digital voltage at the IN pin that selects between S1 and S2 analog inputs
VI	Voltage applied to the D or S1, S2 pins when D or S1, S2 is the switch input
V_{EN}	A voltage that ENABLES the chip
C _{IN}	Capacitance at the digital inputs
C_{OFF}	Capacitance at analog I/O (S1, S2, D) with switch OFF
C _{ON}	Capacitance at analog I/O (S1, S2, D) with switch ON
V _{IH}	Minimum input voltage for logic HIGH
V _{IL}	Minimum input voltage for logic LOW
I _{IH (IIL)}	Input current of the digital input
T _{ON}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON.
T _{OFF}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF.
BW	response of the switch in the ON state measured at 3dB down
X _{TALK}	Is an unwanted signal coupled from channel to channel. Measured in –dB. X_{TALK} = 20LOG V_{OUT}/V_{IN} . This is non-adjacent crosstalk
D_G	Magnitude variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58MHz.
D _P	Phase variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58MHz.
O _{IRR}	Off isolation is the resistance (measured in –dB) between the input and output with the switch off (NO)

TYPICAL PERFORMANCE CHARACTERISTIC



TEST CIRCUITS

Test	V+	R_L	C _L	V _{S1}	V _{S2}
т	5V±0.5V	75Ω	20pF	GND	3V
T _{ON}	5V±0.5V	75Ω	20pF	3V	GND
т	5V±0.5V	75Ω	20pF	GND	3V
T _{OFF}	5V±0.5V	75Ω	20pF	3V	GND

NOTES:

- 1. C_L includes probe and jig capacitance.
- 2. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Z_O = 50 Ω , $t_f \leq$ 2.5ns, $t_f \leq$ 2.5ns.
- 3. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Test Circuit for Voltage Waveform and Switch Time

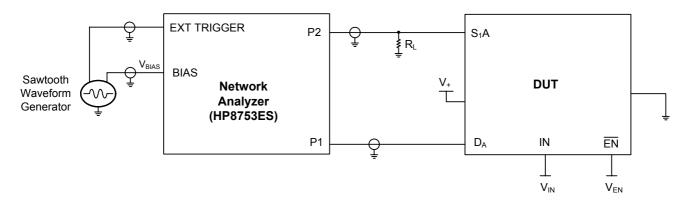


Figure 2. Test Circuit for Differential Gain/Phase Measurement

Differential gain and phase are measured at the output of the ON channel. For example, when V_{IN} = 0, V_{EN} = 0, and D_A is the input, the output is measured at S_1A .

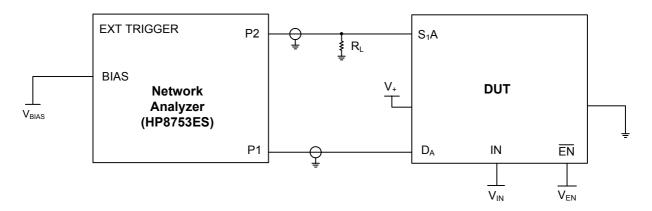
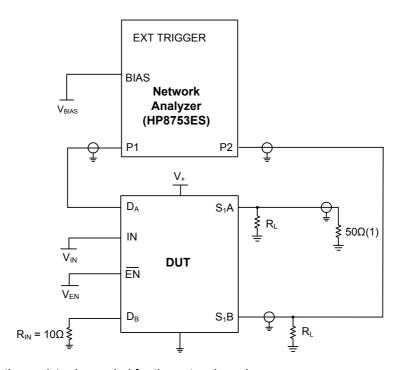



Figure 3. Test Circuit for Frequency Response (BW)

Frequency response is measured at the output of the ON channel. For example, when V_{IN} = 0, V_{EN} = 0, and D_A is the input, the output is measured at S_1A . All unused analog I/O ports are left open.

HP8753ES Setup

Average = 4 RBW = 3Hz V_{BIAS} = 1/2 V_{+} ST = 2s P1 = 0dBM

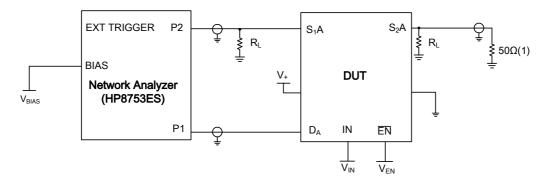

NOTE: (1) A 50Ω termination resistor is needed for the network analyzer.

Figure 4. Test Circuit for Crosstalk (X_{TALK})

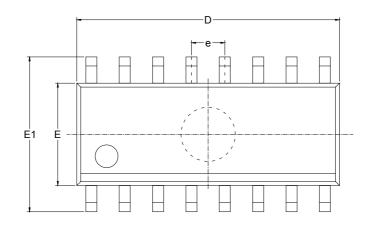
Crosstalk is measured at the output of the nonadjacent ON channel. For example, when V_{IN} = 0, V_{EN} = 0, and D_A is the input, the output is measured at S_1B .

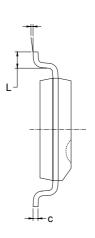
HP8753ES Setup

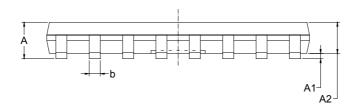
Average = 4 RBW = 3kHz $V_{BIAS} = 1/2 V_{+}$ ST = 2sP1 = 0dBM

NOTE: (1) A 50Ω termination resistor is needed for the network analyzer.

Figure 5. Test Circuit for Off Isolation (OIRR)

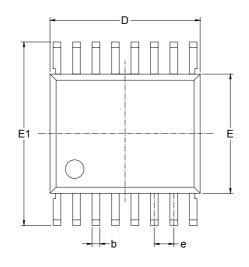

Off isolation is measured at the output of the OFF channel. For example, when $V_{IN} = V_+$, $V_{EN} = 0$, and D_A is the input, the output is measured at S_1A . All unused analog input (D) ports are left open.

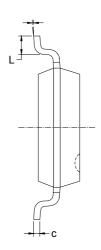

HP8753ES Setup

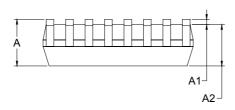

Average = 4 RBW = 3kHz $V_{BIAS} = 1/2 V_{+}$ ST = 2sP1 = 0dBM

PACKAGE OUTLINE DIMENSIONS

SO-16

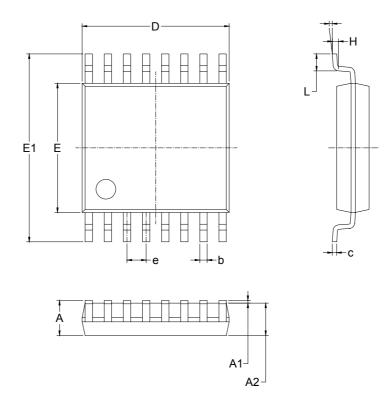





Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	9.800	10.200	0.386	0.402
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
е	1.27 BSC		0.050	BSC
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

PACKAGE OUTLINE DIMENSIONS

QSOP-16 (SSOP16)



Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.200	0.300	0.008	0.012
С	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
е	0.635 BSC		0.025	BSC
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

PACKAGE OUTLINE DIMENSIONS

TSSOP-16

Symbol		Dimensions In Millimeters		nsions ches
	Min	Max	Min	Max
Α		1.100		0.043
A1	0.050	0.150	0.002	0.006
A2	0.800	1.000	0.031	0.039
b	0.190	0.300	0.007	0.012
С	0.090	0.200	0.004	0.008
D	4.900	5.100	0.193	0.201
E	4.300	4.500	0.169	0.177
E1	6.250	6.550	0.246	0.258
е	0.650	0.650 BSC		BSC
L	0.500	0.700	0.02	0.028
Н	0.25	0.25 TYP		TYP
θ	1°	7°	1°	7°

04/2010 REV. B

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For more information regarding SGMICRO Corporation and its products, please visit www.sg-micro.com