

TPS7A63-Q1, TPS7A6401-Q1

ZHCS834G -JUNE 2011-REVISED MARCH 2020

具有超低 I_Q 的 TPS7A63-Q1、TPS7A6401-Q1 300mA、40V 低压降稳压器

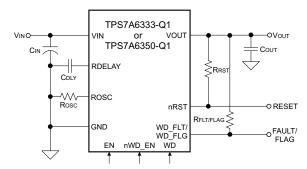
1 特性

- 符合面向汽车 应用的 AEC-Q100 标准:
 - 温度等级 1: -40°C 至 125°C, T_A
 - 结温范围: -40°C 至 150°C, T」
- 低压降:
 - 在 I_{OUT} = 150mA 时为 300mV
- 7V 至 40V 的宽输入电压范围, 瞬态电压高达 45V
- 最大输出电流为 300mA
- 超低静态电流:
 - 轻负载时 I_{OUIESCENT} = 35μA (典型值)
 - EN = 低电平时 I_{SLEEP} < 2µA
- 3.3V 和 5V 固定电压,可调节电压范围为 2.5V 至 7V
- 具有故障/标志的集成看门狗
- 与低 ESR 陶瓷输出电容器搭配使用时可保持稳定
- 集成上电复位:
 - 可编程延迟
 - 开漏复位输出
- 集成故障保护:
 - 短路和过流保护
 - 热关断
- 低输入电压跟踪
- 耐热增强型 14 引脚 HTSSOP-PWP 封装和 10 引 脚 VSON-DRK 封装

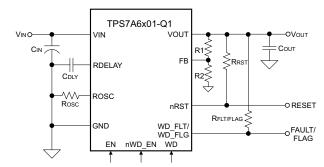
2 应用

- 汽车音响主机
- 前照灯
- 直流/直流转换器
- 汽车中心信息显示屏

3 说明


TPS7A63-Q1 和 TPS7A6401-Q1 是低压降线性稳压器系列产品,专为在轻负载应用中实现低功耗和小于35μA 的静态电流而设计。这类器件具有集成的可编程窗口看门狗和过流保护功能,即使与低 ESR 陶瓷输出电容器搭配使用,也能实现稳定运行。设计人员可使用外部电阻器来设定输出电压。低压跟踪特性允许使用更小的输入电容器并且有可能在冷启动期间无需使用升压转换器。加电复位延迟固定(典型值 250μs),或者使用一个外部电容器可设定延迟。凭借这些特性,这些器件非常适合用于各种汽车应用的电源。

器件信息(1)


	* * *			
器件型号	封装	封装尺寸 (标称值)		
TPS7A63-Q1、 TPS7A6401-Q1	HTSSOP (14)	5.00mm × 4.40mm		
TPS7A63-Q1	VSON (10)	4.00mm × 3.00mm		

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

固定输出电压选项

可调输出电压选项

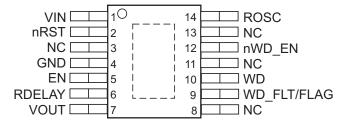
_	\rightarrow
_	ملت
_	`\V

1	特性1	7.4 Device Functional Modes	20
2	应用 1	8 Application and Implementation	21
3	说明1	8.1 Application Information	21
4	修订历史记录 2	8.2 Typical Applications	21
5	Pin Configuration and Functions 4	9 Power Supply Recommendations	24
6	Specifications	10 Layout	24
•	6.1 Absolute Maximum Ratings	10.1 Layout Guidelines	24
	6.2 ESD Ratings	10.2 Layout Example	27
	6.3 Recommended Operating Conditions	11 器件和文档支持	28
	6.4 Thermal Information	11.1 相关链接	28
	6.5 Electrical Characteristics	11.2 接收文档更新通知	28
	6.6 Typical Characteristics 8	11.3 社区资源	
7	Detailed Description 10	11.4 商标	28
	7.1 Overview	11.5 静电放电警告	28
	7.2 Functional Block Diagrams 10	11.6 Glossary	28
	7.3 Feature Description	12 机械、封装和可订购信息	28

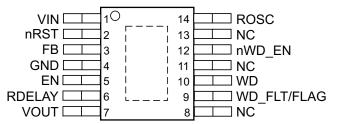
4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

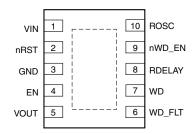
Changes from Revision F (June 2018) to Revision G	Page
己更改 将 AEC-Q100 特性 项目符号更改为符合新标准	
• 已更改将整个文档中的输入电压范围从 11V 更改为 7V	1
• 已更改 <i>更改了应用</i> 部分	1
• Added footnote to V _{IN} row in Recommended Operating Conditions table	5
Added footnote to V _{IN} row in <i>Electrical Characteristics</i> table	6
Changes from Revision E (September 2015) to Revision F	Page
● 已更改 将器件名称更改为 TPS7A63-Q1、TPS7A6401-Q1	
• 已更改 将 4V 更改为 11V (位于第四个特性 项目符号)	1
 Changed V_{IN}, V_{EN} parameter row in Recommended Operating Conditions table rows, changed V_{IN} minimum specification from 4 V to 11 V 	: separated V _{IN} and V _{EN} into different5
• Changed V_{IN} minimum specification from V_{OUT} + 0.3 V to 11 V in Electrical Cha	aracteristics table6
• Changed 4 V to 11 V in Example values column of Input voltage range row of I	Design Parameters table22
• Changed 4 V to 11 V in Example values column of Input voltage range row of I	Design Parameters table23
Changed 4 V to 11 V in first sentence of Power Supply Recommendations sect	tion24
Changes from Revision D (July 2012) to Revision E	Page
 Added ESD Ratings table, Feature Description section, Device Functional Mod section, Power Supply Recommendations section, Layout section, Device and Mechanical, Packaging, and Orderable Information section 	Documentation Support section, and
Changes from Revision C (April 2012) to Revision D	Page
• 更正了整个数据表多处位置的器件型号	1
• 向"特性"列表顶部添加了新的项目符号	



Deleted two Typical Characteristics graphs	8
Changes from Revision B (December 2011) to Revision C	Page
Changed regulated output voltage (6.1), added text to the test conditions (10mA to 200m)	A, $V_{IN} = V_{OUT} + 1V$ to 16V) 6
Changes from Revision A (August 2011) to Revision B	Page
• 删除了器件 TPS7A64333-Q1 和 TPSA6450-Q1	1
Changes from Original (June 2011) to Revision A	Page
Deleted the Ordering Information Table	4
• Changed values for V_{IL} and V_{IH} in the Watchdog Enable Input (nWD_EN pin) section	7
\bullet Changed values for V_{IL} and V_{IH} in the Watchdog Input Pulse (WD pin) section	7



5 Pin Configuration and Functions


PWP Package 14-Pin HTSSOP With PowerPAD IC Package Top View (Fixed Output Voltage Option)

PWP Package 14-Pin HTSSOP With PowerPAD IC Package Top View (Adjustable Output Voltage Option)

DRK Package 10-Pin VSON With Exposed Thermal Pad Top View (Fixed Output Voltage Option)

Pin Functions

	PIN		1/0	DESCRIPTION
NAME			1/0	DESCRIPTION
EN	5	4	I	Chip enable pin: This is a high-voltage-tolerant input pin with an internal pulldown. A high input to this pin activates the device and turns the regulator ON. Connect this input to the VIN terminal for self-bias applications. If this pin remains unconnected, the device stays disabled.
FB	3	_	- 1	Feedback pin (only applicable for TPS7A6x01-Q1): Sense voltage for error amplifier
GND	4	3	I/O	Ground pin: This is signal ground pin of the device.
NC	3	_	_	Not connected (only applicable for TPS7A6333-Q1 and TPS7A6350-Q1)
NC	8	_	_	Not connected
NC	11	_	_	Not connected
NC	13	_	_	Not connected
nRST	2	2	0	Reset pin: This is an open-drain reset output pin with an external pullup resistor connected to the VOUT pin.
nWD_EN	12	9	I	Watchdog enable pin: A high input to this pin disables the watchdog, and vice versa. This is an active-low input pin with an internal pulldown. Leaving this pin is unconnected and floating keeps the watchdog enabled. An external microcontroller can pull this pin high momentarily to disable and reinitialize the watchdog.
RDELAY	6	8	0	Reset delay timer pin: This pin programs the reset delay timer using an external capacitor (C _{DLY}) to ground.
ROSC	14	10	0	ROscillator pin: This pin programs the internal oscillator frequency (and hence the duration of the watchdog window) by connecting an external resistor to ground.
WD	10	7	ı	Watchdog service pin: This is an input pin to provide a service signal to the watchdog.
WD_FLAG	9	6	0	Watchdog flag pin (for TPS7A6401-Q1 only): This is an active-high latched fault (that is, flag) output pin with an external pullup resistor connected to VOUT pin.
WD_FLT	9	6	0	Watchdog fault pin (for TPS7A63-Q1 only): This is an active-low fault output pin with an external pullup resistor connected to the VOUT pin.
VIN	1	1	I	Input voltage pin: The unregulated input voltage is supplied to this pin. A bypass capacitor connected between the VIN pin and GND pin dampens line transients on the input.
VOUT	7	5	0	Regulated output voltage pin: This is a regulated voltage output (V _{OUT} = 3.3 V or 5 V or a programmed value) pin with a limitation on maximum output current. For devices with adjustable output voltage (TPS7A6x01-Q1), connecting an external resistor network programs the output voltage. In order to achieve stable operation and prevent oscillation, connect an external output capacitor (C _{OUT}) with low ESR between this pin and GND pin.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	DESCRIPTION	MIN	MAX	UNIT
V_{IN}, V_{EN}	Unregulated inputs ⁽²⁾⁽³⁾		45	V
V _{OUT}	Regulated output		7	V
FB	Sense voltage for error amplifier ⁽²⁾		7	V
ROSC	Constant-voltage reference (2)		7	V
nWD_EN, WD, WD_FLAG, WD_FLT	Watchdog inputs and outputs ⁽²⁾		7	V
nRST	Open-drain reset output (2)		7	V
RDELAY	Reset delay timer output ⁽²⁾		7	V
T _A	Operating ambient temperature		125	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to GND.

6.2 ESD Ratings

	-		VALUE	UNIT
V	Clastrostatia diasharas	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	±4000	.,
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per AEC Q100-011	±1500	V

⁽¹⁾ AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

		MIN	MAX	UNIT
V _{IN}	Unregulated input voltage	7 ⁽¹⁾	40	V
V _{EN}	Enable pin voltage	4	40	V
nRST, RDELAY, nWD_EN, WD_FLT $^{(2)}$, WD_FLAG $^{(3)}$, WD, FB $^{(4)}$	Low voltage input or output	0	5.25	V
T _J	Operating junction temperature range	-40	150	°C

⁽¹⁾ V_{IN} can go down to 4 V for 130 ms or less and remain functional. If V_{IN} is less than 7 V for longer than 130 ms, then some devices can turn off until the input voltage rises above 7 V.

⁽²⁾ Absolute negative voltage on these pins not to go below -0.3 V.

⁽³⁾ Absolute maximum voltage for duration less than 480 ms.

⁽²⁾ Applicable for TPS7A63-Q1 only

⁽³⁾ Applicable for TPS7A6401-Q1 only

⁽⁴⁾ Applicable for TPS7A6301-Q1 and TPS7A6401-Q1 only

6.4 Thermal Information

	(4)	TPS7A6 TPS7A		
	THERMAL METRIC(1)	PWP (HTTSOP)	DRK (VSON)	UNIT
	Junction-to-case (top) thermal resistance Junction-to-board thermal resistance Junction-to-top characterization parameter Junction-to-board characterization parameter	14 PINS	10 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	46	36.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	32.6	36.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	27.4	11.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.2	0.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	27.2	11.7	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	2.5	3.8	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

 $V_{IN} = 14 \text{ V}, T_J = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C} \text{ (unless otherwise noted)}$

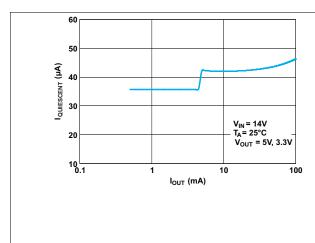
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT VOLTA	GE (VIN PIN)					
V _{IN}	Input voltage	V _{OUT} = 2.5 V to 7 V, I _{OUT} = 1 mA	7 ⁽¹⁾		40	V
I _{QUIESCENT}	Quiescent current	V _{IN} = 8.2 V to 18 V, V _{EN} = 5 V, I _{OUT} = 0.01 mA to 0.75 mA		35		μΑ
I _{SLEEP}	Sleep or shutdown current	V _{IN} = 8.2 V to 18 V, V _{EN} < 0.8 V, I _{OUT} = 0 mA (no load), T _A = 125°C			3	μA
V _{IN-UVLO}	Undervoltage lockout voltage	Ramp V _{IN} down until output is turned OFF		3.16		V
V _{IN(POWERUP)}	Power-up voltage	Ramp V _{IN} up until output is turned ON		3.45		V
DEVICE ENAB	BLE INPUT (EN PIN)				·	
V _{IL}	Logic-input low level		0		0.8	V
V _{IH}	Logic-input high level		2.5		40	V
REGULATED	OUTPUT VOLTAGE (VOUT P	PIN)				
V _{OUT}	Regulated output voltage	Fixed V _{OUT} value (3.3 V, 5 V or a programmed value), I _{OUT} = 10 mA to 200 mA, V _{IN} = V _{OUT} + 1 V to 16 V	-2%		2%	
437	Line regulation	$V_{IN} = 6 \text{ V to } 28 \text{ V}, I_{OUT} = 10 \text{ mA}, V_{OUT} = 5 \text{ V}$			15	mV
$\Delta V_{\text{LINE-REG}}$		V_{IN} = 6 V to 28 V, I_{OUT} = 10 mA, V_{OUT} = 3.3 V			20	mv
A)/	Lead we suitation	I_{OUT} = 10 mA to 200 mA, V_{IN} = 14 V, V_{OUT} = 5 V			25	mV
$\Delta V_{LOAD-REG}$	Load regulation	I_{OUT} = 10 mA to 200 mA, V_{IN} = 14 V, V_{OUT} = 3.3 V			35	IIIV
V	Dropout voltage	I _{OUT} = 200 mA			500	mV
$V_{DROPOUT}$	$(V_{IN} - V_{OUT})$	I _{OUT} = 150 mA			300	mv
R _{SW} ⁽²⁾	Switch resistance	VIN to VOUT resistance			2	Ω
	Outrot some at	V _{OUT} in regulation	0		200	A
l _{OUT}	Output current	[V _{OUT} in regulation, V _{OUT} = 3.3 V, V _{IN} = 6 V] ⁽³⁾	0		300	mA
I _{CL}	Output current limit	V _{OUT} = 0 V (VOUT pin is shorted to ground)	350		1000	mA
PSRR ⁽⁴⁾	Power-supply ripple	$V_{\text{IN-RIPPLE}}$ = 0.5 Vpp, I_{OUT} = 200 mA, frequency = 100 Hz, V_{OUT} = 5 V and V_{OUT} = 3.3 V		60		٩D
PORK ''	rejection	$V_{\text{IN-RIPPLE}}$ = 0.5 Vpp, I_{OUT} = 200 mA, frequency = 150 kHz, V_{OUT} = 5 V and V_{OUT} = 3.3 V		30		dB

⁽¹⁾ V_{IN} can go down to 4 V for 130 ms or less and remain functional. If V_{IN} is less than 7 V for longer than 130 ms, then some devices can turn off until the input voltage rises above 7 V.

⁽²⁾ This test is done with V_{OUT} in regulation, measuring the V_{IN} – V_{OUT} parameter when V_{OUT} drops by 100 mV from the programmed value (of V_{OUT}) at specified loads.

⁽³⁾ Design Information - not tested; specified by characterization.

⁴⁾ Specified by design - not tested.


Electrical Characteristics (continued)

 $V_{IN} = 14 \text{ V}, T_J = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
RESET (nRST	PIN)					
V _{OL}	Reset pulled low	I _{OL} = 5 mA			0.4	V
I _{OH}	Leakage current	Reset pulled to VOUT through a 5-kΩ resistor			1	μΑ
	December 11	V_{OUT} powered up above internally set tolerance, $V_{OUT} = 5 \text{ V}$	4.5	4.65	4.77	.,
$V_{TH(POR)}$	Power-on-reset threshold	V _{OUT} powered up above internally set tolerance, V _{OUT} = 3.3 V		3.07		V
	D	V _{OUT} falling below internally set tolerance, V _{OUT} = 5 V	4.5	4.65	4.77	.,
UV _{THRES}	Reset threshold	V _{OUT} falling below internally set tolerance, V _{OUT} = 3.3 V		3.07		V
. (3)	5	C _{DLY} = 100 pF		300		μs
t _{POR} (3)	Power-on-reset delay	C _{DLY} = 100 nF		300		ms
t _{POR-PRESET}	Internally preset Power-on-reset delay	C _{DLY} not connected, V _{OUT} = 5 V and V _{OUT} = 3.3 V		250		μs
t _{DEGLITCH}	Reset deglitch time			5.5		μs
	Y (RDELAY PIN)				·	
V _{TH(RDELAY)}	Threshold to release nRST high	Voltage at RDELAY pin is ramped up		3	3.3	V
I _{DLY}	Delay capacitor charging current		0.75	1	1.25	μA
I _{OL}	Delay capacitor discharging current	Voltage at RDELAY pin = 1 V	5			mA
CURRENT VO	LTAGE REFERENCE (ROSC	PIN)				
V _{ROSC}	Voltage reference		0.95	1	1.05	V
WATCHDOG	FAULT / FLAG OUTPUT (WD	FLT / WD_FLAG Pin)				
V _{OL}	Logic output low level	I _{OL} = 5 mA			0.4	V
I _{OH}	Leakage current	WD_FLT/WD_FLG pulled to V_{OUT} through 5-k Ω resistor			1	μΑ
WATCHDOG	ENABLE INPUT (nWD_EN PII	N)				
V _{IL}	Logic input low level				0.8	V
V _{IH}	Logic input high level	3 V < V _{DD} < 5.25 V	2.5			V
WATCHDOG	INPUT PULSE (WD PIN)		-		*	
V_{IL}	Logic input low level				0.8	V
V _{IH}	Logic input high level	3 V < V _{DD} < 5.25 V	2.5			V
	Matabalan window donation	$R_{OSC} = 10 \text{ k}\Omega \pm 1\%$		10		
t_{WD}	Watchdog window duration	$R_{OSC} = 20k\Omega \pm 1\%$		20		ms
t _{WD-tol}	Tolerance of watchdog period using external resistor	Excludes tolerance of R _{OSC} (external resistor connected to ROSC pin)	-10%		10%	
t _{WD-DEFAULT}	Default watchdog period	External resistor not connected, ROSC pin is floating or open	108	164	254	ms
t _{WD-HOLD}	Minimum pulse width for resetting watch dog timer			1.65		μs
OPERATING T	TEMPERATURE RANGE					
T _J	Operating junction temperature		-40		150	°C
T _{SHUTDOWN}	Thermal shutdown trip point			165		٥C
T _{HYST}	Thermal shutdown hysteresis			10		°C

6.6 Typical Characteristics

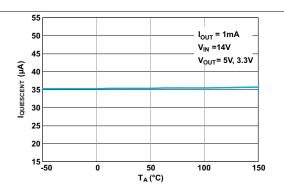
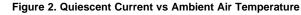
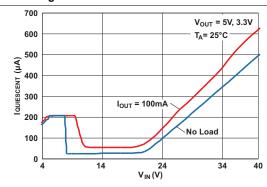




Figure 1. Quiescent Current vs Load Current

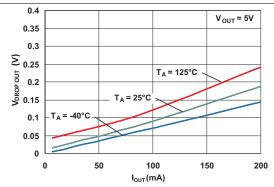


Figure 3. Quiescent Current vs Input Voltage

Measure dropout voltage when the output voltage drops by 100 mV from the regulated output-voltage level. (For example, for an output voltage programmed to be 5 V, measure the dropout voltage when the output voltage drops down to 4.9 V from 5 V.)

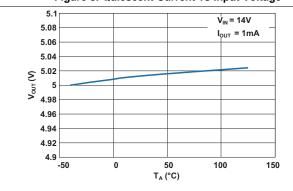


Figure 4. Dropout Voltage vs Load Current

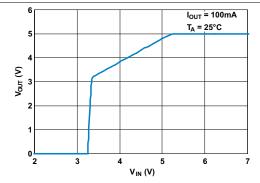
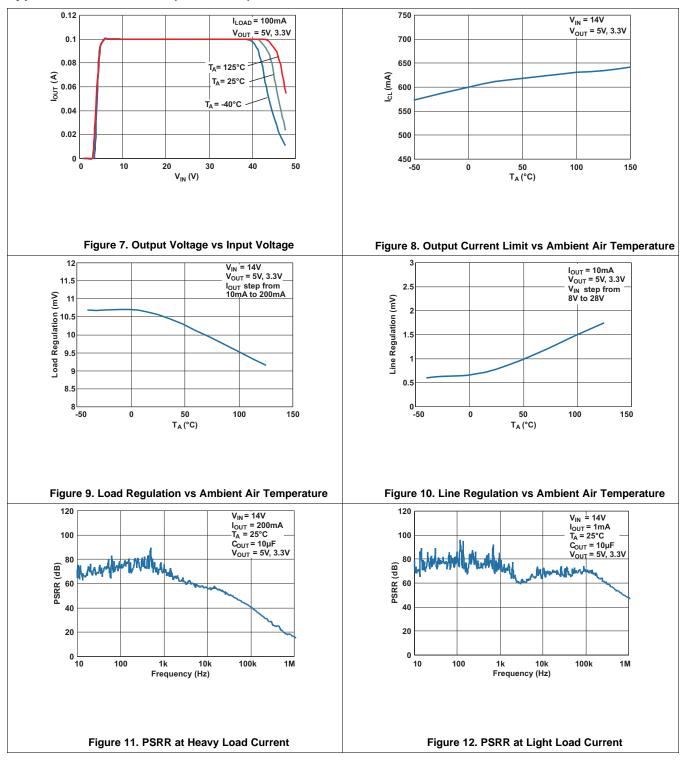



Figure 5. Output Voltage vs Ambient Air Temperature (V_{OUT} Set To 5 V)

Figure 6. Output Voltage vs Input Voltage $(V_{OUT}$ Set To 5 V)

Typical Characteristics (continued)

7 Detailed Description

7.1 Overview

The TPS7A63-Q1 and TPS7A6401-Q1 are a family of monolithic low-dropout linear voltage regulators with integrated watchdog and reset functionality. These voltage regulators are designed for low power consumption and quiescent current less than 25 µA in light-load applications. Because of a programmable reset delay (also called power-on-reset delay), these devices are well-suited in power supplies for microprocessors and microcontrollers.

These devices are available in two fixed and adjustable output-voltage versions as follows:

- Fault (WD_FLT) output version: TPS7A63-Q1
- Flag (WD FLAG) output version: TPS7A6401-Q1

Feature Description describes the features of the TPS7A63-Q1 and TPS7A6401-Q1 voltage regulators in detail.

7.2 Functional Block Diagrams

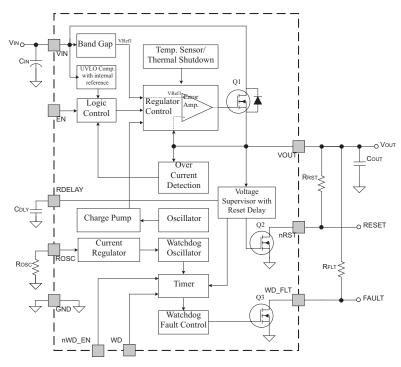


Figure 13. TPS7A6333-Q1 and TPS7A6350-Q1 (Fixed Output Voltage With Fault Output)

Functional Block Diagrams (continued)

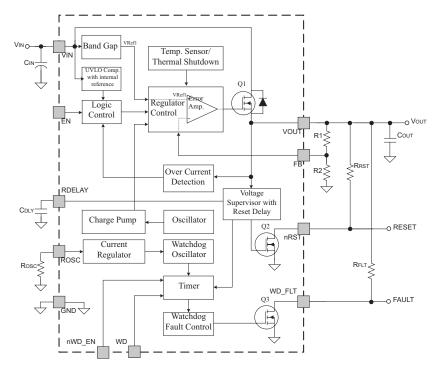


Figure 14. TPS7A6301 (Adjustable Output Voltage With Fault Output)

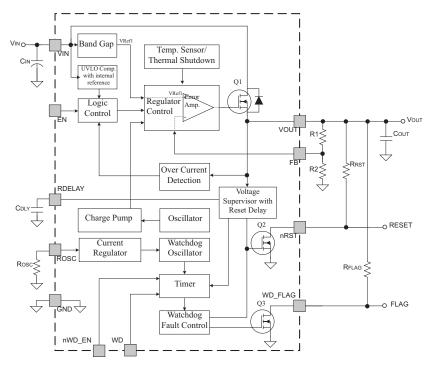


Figure 15. TPS7A6401-Q1 (Adjustable Output Voltage With Flag Output)

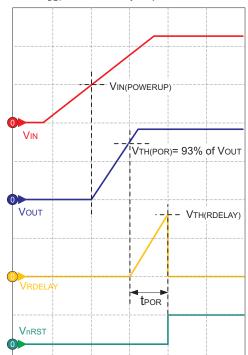
(1)

7.3 Feature Description

7.3.1 Power Up, Reset Delay, and Reset Output

During power up, the regulator incorporates a protection scheme to limit the current through the pass element and output capacitor. When the input voltage exceeds a certain threshold (VIN_(POWERUP)) level, the output voltage begins to ramp up as shown in Figure 16.

When starting up, and also when the output recovers from a negative voltage spike due to a load step or a dip in the input voltage for a specified duration, the device implements reset delay to indicate that output voltage is stable and in regulation.


When the output voltage reaches the power-on-reset threshold $(V_{TH(POR)})$ level, that is, 93% of regulated output voltage (3.3 V or 5 V, or a programmed value), a constant output current charges an external capacitor (C_{DLY}) to an internal threshold $(V_{TH(RDELAY)})$ voltage level. Then, nRST asserts high and C_{DLY} discharges through an internal load. This allows C_{DLY} to charge from approximately 0 V during the next power cycle.

Program the reset delay time by connecting an external capacitor (C_{DLY} ,100 pF to 100 nF) to the RDELAY pin. Equation 1 gives the delay time:

$$t_{POR} = \frac{CDLY \times 3}{1 \times 10^{-6}}$$

where

- t_{POR} = reset delay time in seconds
- C_{DLY} = reset delay capacitor value in farads

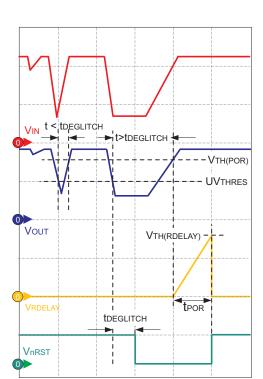


Figure 16. Power Up and Conditions for Activation of Reset

Figure 17. Reset Delay and Deglitch Filter

As Figure 17 shows, if the regulated output voltage falls below 93% of the set level, nRST asserts low after a short de-glitch time of approximately 5.5 μ s (typical). In case of negative transients in the input voltage (V_{IN}), the reset signal asserts low only if the output (V_{OUT}) drops and stays below the reset threshold level (V_{TH(POR)}) for more than the deglitch time (t_{DEGLITCH}), as Figure 17 and Figure 20 illustrate. While nRST is low, if the input voltage returns to the nominal operating voltage, the normal power-up sequence ensues. nRST asserts high only if the output voltage exceeds the reset threshold voltage (V_{TH(POR)}) and the reset delay time (t_{POR}) has elapsed.

Feature Description (continued)

7.3.2 Adjustable Output Voltage

Program the regulated output voltage (V_{OUT}) by connecting external resistors to FB pin. Calculate the feedback resistor values using Equation 2.

$$V_{OUT} = V_{REF} \left[1 + \frac{R1}{R2} \right]$$

where

- V_{OUT}= desired output voltage
- V_{REF} = reference voltage (V_{REF} = 1.23 V, typically)

Equation 3 gives the overall tolerance of the regulated output.

$$tol_{V_{OUT}} = tol_{V_{REF}} + \left[\frac{R1}{R1 + R2}\right] \left[tol_{R1} + tol_{R2}\right]$$

where

- tol_{VOUT} = tolerance of the output voltage
- tol_{VREF} = tolerance of the internal reference voltage (tol_{VREF} = ± 1.5% typically)
- tol_{R1},tol_{R2} = tolerance of feedback resistors R1, R2

For a tighter tolerance on V_{OUT} , select lower-value feedback resistors. TI recommends to select feedback resistors such that the sum of R1 and R2 is from 20 k Ω to 200 k Ω .

7.3.3 Chip Enable

These devices have a high-voltage-tolerant EN pin that an external microcontroller or a digital control circuit can use to enable and disable them. A high input to this pin activates the device and turns the regulator on. For self bias applications, connect this input to the VIN terminal. An internal pulldown resistor is connected to this pin, and therefore if this pin remains unconnected, the device stays disabled.

7.3.4 Charge Pump Operation

These devices have an internal charge pump which turns on or off depending on the input voltage and the output current. The charge pump switching circuitry must not cause conducted emissions to exceed required thresholds on the input voltage line. For a given output current, the charge pump stays on at lower input voltages and turns off at higher input voltages. The charge pump switching thresholds are hysteretic. Figure 18 and Figure 19 show typical switching thresholds for the charge pump at light (I_{OUT} < approximately 2 mA) loads, respectively.

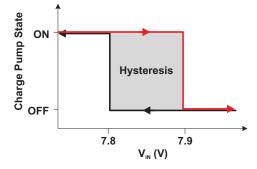


Figure 18. Charge Pump Operation at Light Loads

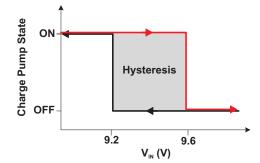


Figure 19. Charge Pump Operation at Heavy Loads

7.3.5 Low-Power Mode

At light loads and high input voltages (V_{IN} > approximately 8 V, such that the charge pump is off), the device operates in low-power mode and the quiescent current consumption is reduced to 25 μ A (typical) as shown in Table 1.

Table 1. Typical Quiescent Current Consumption

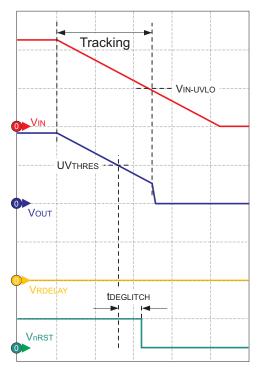
I _{OUT}	Charge Pump ON	Charge Pump OFF
I _{OUT} < approximately 2 mA (Light load)	250 μΑ	35 μA (Low-power mode)
I _{OUT} > approximately 2 mA (Heavy load)	280 μΑ	70 µA

7.3.6 Undervoltage Shutdown

These devices have an integrated undervoltage lockout (UVLO) circuit to shut down the output if the input voltage (V_{IN}) falls below an internally fixed UVLO threshold level ($V_{IN-UVLO}$). This ensures that the regulator does not latch into an unknown state during low input voltage conditions. The regulator powers up when the input voltage exceeds the $V_{IN(POWERUP)}$ level, as Figure 20 shows.

7.3.7 Low-Voltage Tracking

At low input voltages, the regulator drops out of regulation, and the output voltage tracks the input minus a voltage based on the load current (I_{OUT}) and switch resistance (R_{SW}), as Figure 20 shows. This feature allows for a smaller input capacitor and can possibly eliminate the need of using a boost convertor during cold crank conditions, as Figure 20 shows.


7.3.8 Integrated Fault Protection

These devices feature integrated fault protection to make them ideal for use in automotive applications. In order to remain in a safe area of operation during certain fault conditions, the devices use internal current-limit protection and current-limit foldback to limit the maximum output current. This protects them from excessive power dissipation. For example, during a short-circuit condition on the output, fault protection limits the current through the pass element to I_{CL} to protect the device from excessive power dissipation.

7.3.9 Thermal Shutdown

These devices incorporate a thermal shutdown (TSD) circuit as a protection from overheating. For continuous normal operation, the junction temperature should not exceed the TSD trip point. The junction temperature exceeding the TSD trip point causes the output to turn off. When the junction temperature falls below TSD trip point, the output turns on again, as Figure 21 shows.

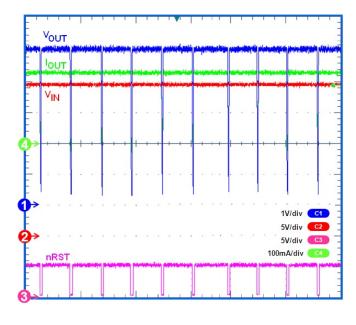


Figure 20. Low-Voltage Tracking and Undervoltage Lockout

Figure 21. Thermal Cycling Waveform for TPS7A6350-Q1 (V_{IN}= 24 V, I_{OUT}= 200 mA, V_{OUT}= 5 V)

7.3.10 Integrated Window Watchdog

These devices have an integrated watchdog with fault (WD_FLT) and flag (WD_FLAG) output options. Both device options are available in fixed- and adjustable-output versions. The watchdog operation, service fault conditions, and difference between fault (TPS7A63-Q1) and flag (TPS7A6401-Q1) output versions are described as follows.

7.3.10.1 Programmable-Window Watchdog

Program the duration of the watchdog window by connecting an external resistor (R_{OSC}) to ground at the ROSC pin. The current through the resistor sets the clock frequency of the internal oscillator. The user can adjust the duration of the watchdog window (that is, the watchdog timer period) by changing the resistor value. The duration of the watchdog window and the duration of the fault output are multiples of the internal oscillator frequency and are given by the following equations:

$$t_{WD} = 10^{-6} \times R_{OSC} = 5000 \times 1 / f_{OSC}$$
 (4)

$$t_{WD_OUT} = 1 / f_{OSC}$$
 (5)

$$t_{CW} = t_{OW} = 1 / 2 t_{WD}$$

where

- t_{WD} = width of watchdog window
- R_{OSC} = resistor connected at ROSC pin
- t_{WD OUT} = duration of fault output
- f_{OSC} = frequency of internal oscillator
- t_{CW} = duration of closed window
- t_{OW} = duration of open window
 (6)

As shown in Figure 22, each watchdog window consists of an open window and a closed window, each having a width approximately 50% of the watchdog window. However, there is an exception to this; the first open window after watchdog initialization is eight times the duration of the watchdog window. All open windows except the one after watchdog initialization are one-half the width of the watchdog window. On initialization, the watchdog must receive service (by software, external microcontroller, and so forth) only during an open window. A watchdog serviced during a closed window, or not serviced during a open window, creates a watchdog fault condition.

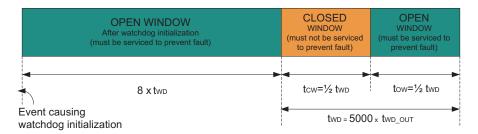


Figure 22. Watchdog Window Duration

7.3.10.2 Watchdog Enable

An external microcontroller or a digital circuit can apply an appropriate signal to the nWD_EN pin to enable or disable the watchdog. A low input to this pin turns the watchdog on. Because of an internal pulldown resistor connected to this pin, leaving the pin unconnected keeps the watchdog enabled.

7.3.10.3 Watchdog Service Signal

In order for the watchdog service signal (WD) to service an open window correctly, the service signal must stay high for a duration of at least $t_{WD\ HOLD}$. The recommended value of $t_{WD\ HOLD}$ is given by Equation 7:

$$t_{WD_HOLD} = 3 \times t_{WD_OUT} \tag{7}$$

7.3.10.4 Watchdog Fault Outputs

The WD_FLT pin and WD_FLAG pin are fault output terminals for the TPS7A63-Q1 and TPS7A6401-Q1 devices, respectively. Typically, one pulls these fault outputs high to a regulated output supply. In the case of a watchdog fault condition, the TPS7A63-Q1 momentarily pulls WD_FLT low for a duration of two_Out, whereas the TPS7A6401-Q1 latches the WD_FLAG high and momentarily pulls nRST low for a duration of two Outputs.

7.3.10.5 Watchdog Initialization

On power up and during normal operation, the watchdog initializes under the conditions shown in Table 2. The normal operation of the watchdog for the WD_FLT and WD_FLAG output device options is shown in Figure 23 and Figure 24, respectively.

Table 2. Conditions For Watchdog Initialization

Edge	What causes watchdog to initialize?	TPS7A63-Q1 (FAULT Option)	TPS7A6401-Q1 (FLAG Option)		
	Rising edge of nRST (when V_{OUT} exceeds $V_{TH(POR)}$) while the watchdog is in the enabled state, for example, during soft power up	✓	✓		
¥	Falling edge of nWD_EN while the nRST is already high, for example, when the microprocessor enables the watchdog after the device is powered up	✓	✓		
<u> </u>	Rising edge of WD_FLT while the nRST is already high and the watchdog is in the enabled state, for example, right after a closed window is serviced	✓	Х		

7.3.10.6 Watchdog Operation

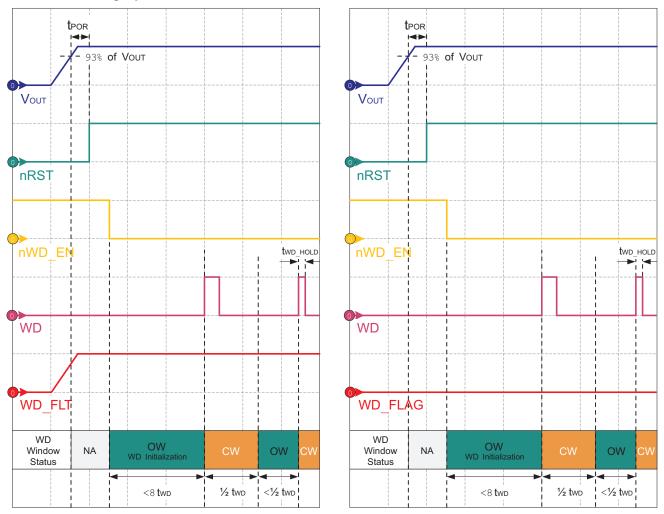


Figure 23. Power Up, Initialization, and Normal Operation for TPS7A63-Q1

Figure 24. Power Up, Initialization, and Normal Operation for TPS7A6401-Q1

Figure 23 shows watchdog initialization and operation for the TPS7A63-Q1. After output voltage is in regulation and reset asserts high (clearly the chip-enable pin is high), the watchdog becomes enabled when an external signal pulls nWD_EN (the watchdog enable pin) low. This causes the watchdog to initialize and wait for a service signal during the first open window for 8x the duration of t_{WD}. A service signal applied to the WD pin during the first open window resets the watchdog counter and a closed window starts. To prevent a fault condition from occurring, watchdog service must not occur during the closed window. Watchdog service must occur during the following open window to prevent fault condition from occurring. The fault output (WD_FLT), externally pulled up to VOUT (typically), stays high as long as the watchdog receives proper serviced and there is no fault condition.

Figure 24 shows watchdog initialization and operation for FLAG output version (TPS7A6401-Q1). The fault output (WD_FLAG), externally pulled up to VOUT (typically), stays low as long as the watchdog receives proper service and there is no fault condition.

Likewise, enabling the watchdog before powering the device on (that is, pulling the nWD_EN pin low before power up), the watchdog initializes as soon as the output voltage is in regulation and reset asserts high (see Table 2 for Conditions for Watchdog Initialization).

7.3.10.7 Watchdog Fault Conditions

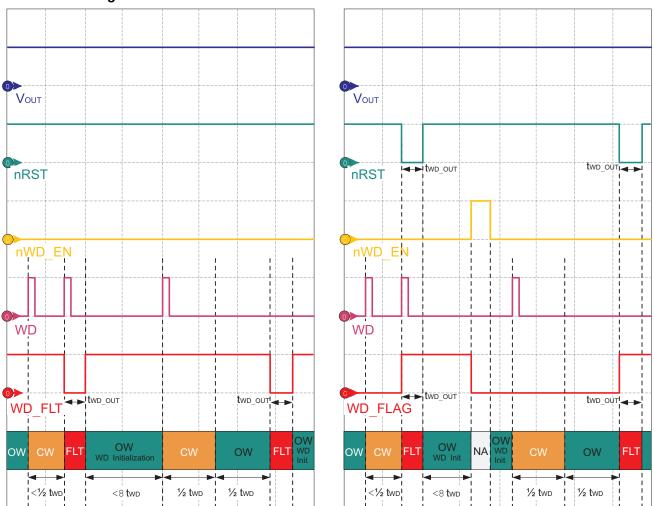


Figure 25. Watchdog Service Fault Conditions for TPS7A63-Q1

Figure 26. Watchdog Service Fault Conditions for TPS7A6401-Q1

For both device options, a watchdog fault condition occurs in following (non-exhaustive) cases:

- When the watchdog receives service during a closed window.
- When watchdog does not receive service during an open window (this open window could be the one after watchdog initialization, or the one following a closed window).

As shown in Figure 25, for TPS7A63-Q1 the first watchdog fault registers when the watchdog receives service during a closed window. This causes the watchdog fault pin (WD_FLT) to go low temporarily for a duration of t_{WD_OUT} . Following the fault, the watchdog reinitializes. Likewise, the second fault registers when the watchdog does not receive service during an open window (following a closed window). Again, the fault pin (WD_FLT) is asserts low for a duration of t_{WD_OUT} .

As shown in Figure 26, for TPS7A6401-Q1 the first watchdog fault registers when watchdog receives service during a closes window. This causes the watchdog flag pin (WD_FLAG) to become high and stay latched. At the same time, nRST pin goes low temporarily for the duration of t_{WD_OUT}. WD_FLAG remains high until toggling the nWD_EN pin disables and re-enables the watchdog or the watchdog receives service properly (while nWD_EN is low and nRST is high). The second fault registers when the watchdog does not receive service during an open window (following a closed window). While WD_FLAG is high (that is, during a fault condition), if the watchdog stays enabled, and reset is high; a watchdog service signal can also bring WD_FLAG low (about 5 µs after the watchdog receives service).

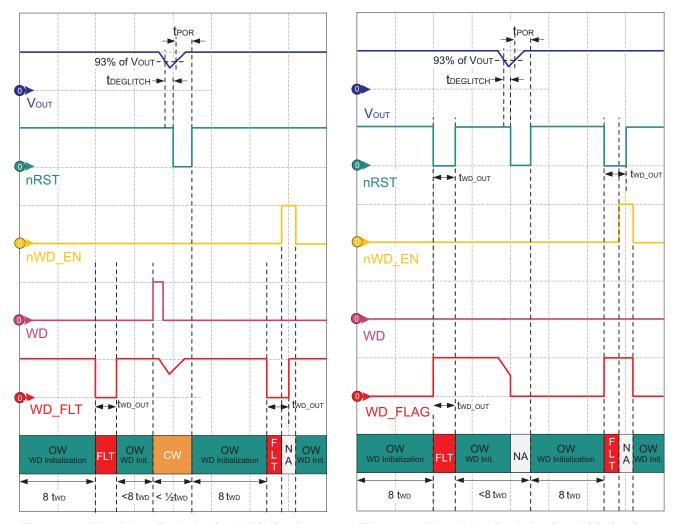


Figure 27. Watchdog Fault During Initialization, and Reinitialization During Reset for TPS7A63-Q1

Figure 28. Watchdog Fault During Initialization, and Reinitialization During Reset for TPS7A6401-Q1

As shown in Figure 27 for the TPS7A6401-Q1, the watchdog fault condition also occurs if the watchdog does not receive service during the open window after watchdog initialization. That is, if the watchdog does not receive service during the first $8 \times t_{WD_OUT}$ period after initialization, a fault condition occurs. This causes the watchdog fault pin (WD_FLT) to go low temporarily for a duration of t_{WD_OUT} . In case of a load transient, if the regulated output voltage drops down causing reset (nRST) to go low, the rising edge on nRST causes the watchdog to reinitialize (that is, when reset becomes high with the watchdog still enabled). During a fault condition (that is, WD_FLT is low) with the watchdog disabled, the fault output continues to stay low until t_{WD_OUT} is elapsed. A falling edge on nWD EN pin causes the watchdog to reinitialize while nRST is still high.

As shown in Figure 28 for the TPS7A6401-Q1, the watchdog fault condition also occurs if the watchdog does not receive service during the open window after watchdog initialization. That is, if the watchdog does not receive service in first $8x \ t_{WD_OUT}$ period after initialization, a fault condition occurs. This causes the watchdog flag pin (WD_FLAG) to become high and stay latched. At the same time, the nRST pin goes low temporarily for a duration of t_{WD_OUT} . In the case of a load transient, if the regulated output voltage drops down causing the reset output to go low, the WD_FLAG asserts low, and the rising edge on nRST causes the watchdog to reinitialize (while the watchdog remains enabled). During a fault condition (that is, WD_FLAG is high), and with a disabled watchdog, the flag output continues to stay high as long as the watchdog remains enabled or receives proper service. However, nRST stays low until t_{WD_OUT} elapses. Re-enabling the watchdog causes watchdog to reinitialize (while nRST is still high).

7.4 Device Functional Modes

7.4.1 Operation With V_{IN} Lower Than 4 V

The TPS7A63-Q1 and TPS7A6401-Q1 family devices operate with input voltage above 4 V. The typical UVLO voltage is 3.16 V. The device can operate at input voltage lower than 4 V, but at input voltage below the actual UVLO, the device will shut down.

7.4.2 Operation With V_{IN} Larger Than 4 V

When V_{IN} is greater than 4 V, if the input voltage is higher than V_{OUT} plus the dropout voltage, the output voltage is equal to the set value. Otherwise, the output voltage is equal to VIN minus the dropout voltage.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

Typical application circuits for TPS76333-Q1/TPS76350-Q1 and TPS7A6401-Q1 are shown in Figure 29 and Figure 32. Depending on the end application, one may use different values of external components. Carefully select feedback resistors (R1 and R2), used to program the output voltage. Using smaller resistors results in higher current consumption, whereas using very large resistors impacts the sensitivity of the regulator. Therefore, TI recommends selecting feedback resistors such that the sum of R1 and R2 is from 20 k Ω to 200 k Ω .

8.1.1 Example

If the desired regulated output voltage is 5 V, after selecting R2 then one can calculate R1 using (or vice versa) Equation 2. Knowing V_{REF} = 1.23 V (typical), V_{OUT} = 5 V, selecting R2 = 20 k Ω , the calculated value of R1 is 61.3 k Ω .

During fast load steps, an application may require a larger output capacitor to prevent the output from temporarily dropping down. TI recommends a low-ESR ceramic capacitor with dielectric of type X5R or X7R. One can also connect a bypass capacitor at the output to decouple high-frequency noise as per the end application.

8.2 Typical Applications

8.2.1 Typical Application Using the TPS7A6333-Q1 or TPS7A6350-Q1

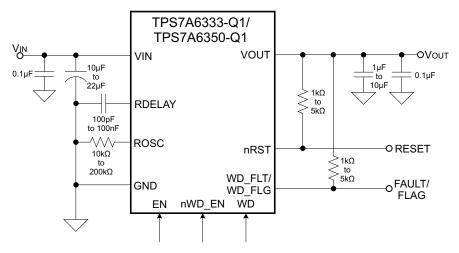


Figure 29. Typical Application Schematic, TPS7A6333-Q1/6350-Q1

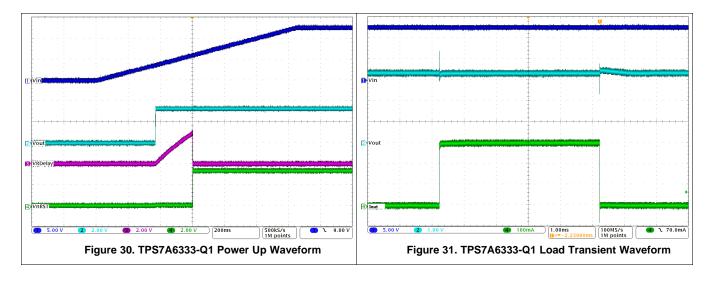
Typical Applications (continued)

8.2.1.1 Design Requirements

For this design example, use the parameters listed in Table 3.

Table 3. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUES
Input voltage range	7 V - 40 V
Input capacitor range	10 μF - 22 μF
Output voltage	3.3 V, 5 V
Output current rating	300 mA maximum
Output capacitor range	1 μF-10 μF


8.2.1.2 Detailed Design Procedure

When using the TPS7A6333-Q1, TPS7A6350-Q1, TI recommends adding a 10- μ F to 22- μ F capacitor to the input to keep the input voltage stable. TI also recommends adding a 1- μ F to 10- μ F low ESR ceramic capacitor to get a stable output.

The reset delay time is set by an external capacitor (CDLY) to ground, capacitor value typical from 100 pF to 100 nF. Equation 1 provides the method for the calculation.

Connecting an external resistor to ground at the ROSC pin can set the duration of the watchdog window. Equation 4 provides the method for the calculation. Usually a $10-k\Omega$ to $200-k\Omega$ resistor can be used to set the time.

8.2.1.3 Application Curves

8.2.2 Typical Application Using the TPS7A6401-Q1

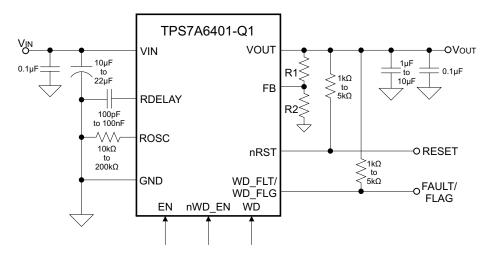


Figure 32. Typical Application Schematic TPS7A6401-Q1

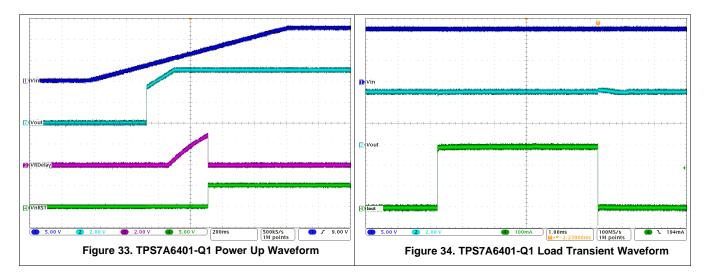
8.2.2.1 Design Requirements

For this design example, use the parameters listed in Table 4.

rabio ii booigii i araiiiotoio							
DESIGN PARAMETER	EXAMPLE VALUES						
Input voltage range	7 V - 40 V						
Input capacitor range	10 μF-22 μF						
Output voltage	2.5 V - 7 V						
Output current rating	300 mA maximum						
Output capacitor range	1 uF-10 uF						

Table 4. Design Parameters

8.2.2.2 Detailed Design Procedure


When using TPS7A6401-Q1, TI recommends adding a 10-µF to 22-µF capacitor to the input to keep the input voltage stable. TI also recommends adding a 1-µF to 10-µF low ESR ceramic capacitor to get a stable output.

The output voltage is set by the R1 and R2 resistor network. Output voltage can be calculated by Equation 2.

The reset delay time is set by an external capacitor (CDLY) to ground, capacitor value typical from 100 pF to 100 nF. Equation 1 provides the method for the calculation. Connecting an external resistor to ground at the ROSC pin can set the duration of the watchdog window. Equation 4 provides the method for the calculation. Usually a $10\text{-k}\Omega$ to $200\text{-k}\Omega$ resistor can be used to set the time.

TEXAS INSTRUMENTS

8.2.2.3 Application Curves

9 Power Supply Recommendations

The device is designed to operate from an input-voltage supply range from 7 V to 40 V. This input supply must be well regulated. If the input supply is located more than a few inches from the TPS7A63XX-Q1 or TPS7A64XX-Q1 device, TI recommends adding an electrolytic capacitor with a value of 10 μ F and a ceramic bypass capacitor at the input.

10 Layout

10.1 Layout Guidelines

For the LDO power supply, especially these high voltage and large current ones, layout is an important step. If layout is not carefully designed, the regulator could not deliver enough output current because of the thermal limitation. To improve the thermal performance of the device, and maximize the current output at high ambient temperature, it is recommended to spread the thermal pad as large as possible and put enough thermal vias on the thermal pad. Figure 37 shows an example layout.

10.1.1 Power Dissipation and Thermal Considerations

Calculated the power dissipated in the device using Equation 8.

$$P_D = I_{OUT} \times (V_{IN} - V_{OUT}) + I_{OUIESCENT} \times V_{IN}$$

where

- P_D = continuous power dissipation
- I_{OUT} = output current
- V_{IN} = input voltage
- V_{OUT} = output voltage

As $I_{OUIESCENT} \ll I_{OUT}$, therefore, ignore the term $I_{OUIESCENT} \times V_{IN}$ in Equation 8.

For a device in operation at a given ambient air temperature (T_A) , calculate the junction temperature (T_J) using Equation 9.

$$\mathsf{T}_\mathsf{J} = \mathsf{T}_\mathsf{A} + (\mathsf{R}_{\theta \mathsf{J} \mathsf{A}} \times \mathsf{P}_\mathsf{D})$$

where

Calculate the rise in junction temperature due to power dissipation using Equation 10.

Layout Guidelines (continued)

$$\Delta T = T_J - T_A = (R_{\theta JA} \times P_D) \tag{10}$$

For a given maximum junction temperature (T_{J-Max}) , calculate the maximum ambient air temperature (T_{A-Max}) at which the device can operate using Equation 11.

$$T_{A-Max} = T_{J-Max} - (R_{\theta JA} \times P_D) \tag{11}$$

10.1.1.1 Example

If $I_{OUT}=100$ mA, $V_{OUT}=5$ V, $V_{IN}=14$ V, $I_{QUIESCENT}=250$ μA , and $R_{\theta JA}=50$ °C/W, the continuous power dissipated in the device is 0.9 W. The rise in junction temperature due to power dissipation is 45 °C. For a maximum junction temperature of 150 °C, the maximum ambient air temperature at which the device can operate is 105 °C.

For adequate heat dissipation, TI recommends soldering the thermal pad (exposed heat sink) to the thermal land pad on the PCB. Doing this provides a heat conduction path from the die to the PCB and reduces overall package thermal resistance. Power derating curves for the TPS7A63-Q1 and TPS7A6401-Q1 PWP package and TPS7A6333-Q1 DRK are comparable; see Figure 35.

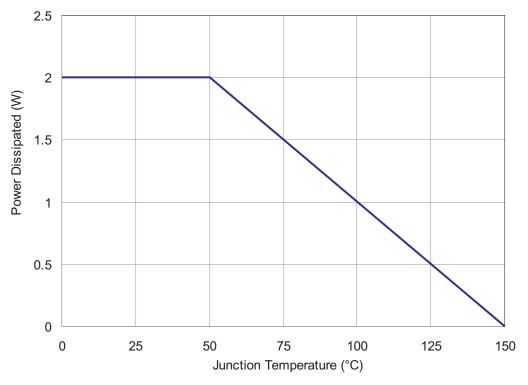
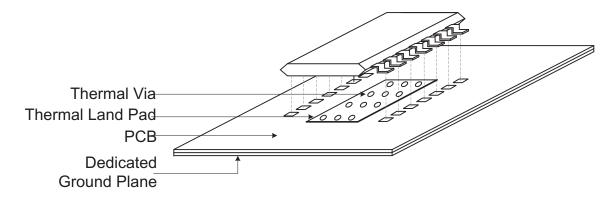
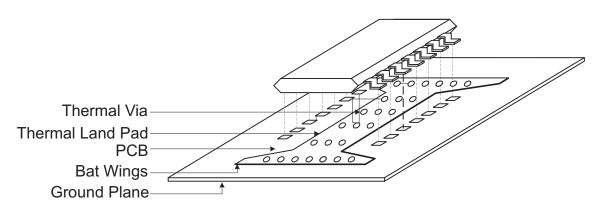



Figure 35. Power Derating Curve


For optimum thermal performance, TI recommends using a high-K PCB with thermal vias between the ground plane and solder pad or thermal land pad; see Figure 36 (a) and (b). Further, use a thicker ground plane and a thermal land pad with a larger surface area to inprove considerably the heat-spreading capabilities of a PCB. For a two-layer PCB, a bat wing layout can enhance the heat-spreading capabilities.

Layout Guidelines (continued)

(a) Multilayer PCB with a dedicated ground plane

(b) Dual layer PCB with Bat wings for enhanced heat spreading

Figure 36. Using Multilayer PCB and Thermal Vias for Adequate Heat Dissipation

Keeping other factors constant, surface area of the thermal land pad contributes to heat dissipation only to a certain extent.

10.2 Layout Example

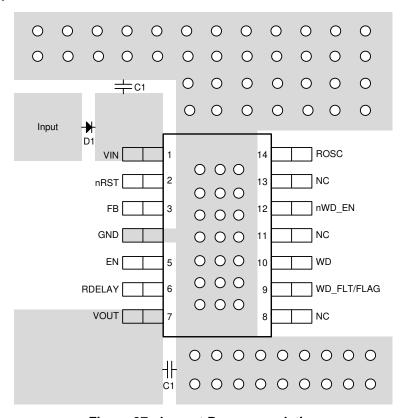


Figure 37. Layout Recommendation

11 器件和文档支持

11.1 相关链接

下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。

表 5. 相关链接

器件	产品文件夹	立即订购	技术文档	工具和软件	支持和社区
TPS7A63-Q1	单击此处	单击此处	单击此处	单击此处	单击此处
TPS7A6401-Q1	单击此处	单击此处	单击此处	单击此处	单击此处

11.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.3 社区资源

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.4 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

www.ti.com 2-May-2025

PACKAGING INFORMATION

Orderable	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
part number	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TPS7A6301QPWPRQ1	Active	Production	HTSSOP (PWP) 14	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	7A6301
TPS7A6333QDRKRQ1	Active	Production	VSON (DRK) 10	3000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	PRGQ
TPS7A6333QPWPRQ1	Active	Production	HTSSOP (PWP) 14	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	7A6333
TPS7A6350QPWPRQ1	Active	Production	HTSSOP (PWP) 14	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	7A6350
TPS7A6401QPWPRQ1	Active	Production	HTSSOP (PWP) 14	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	7A6401

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

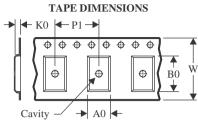
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Dec-2023

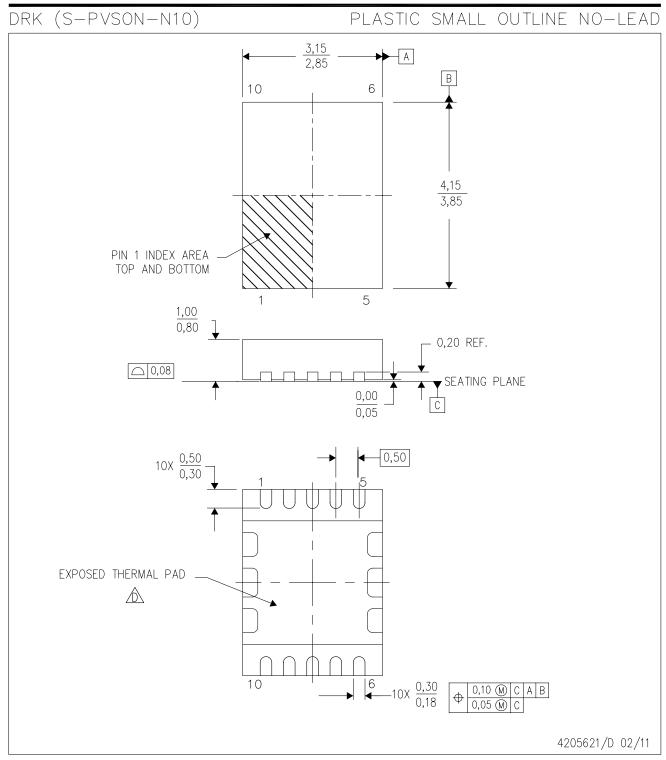
TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

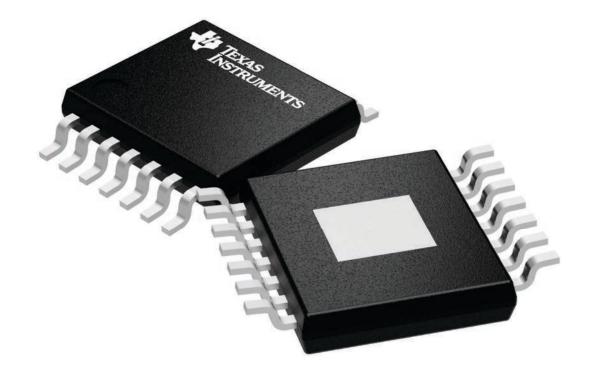
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS7A6301QPWPRQ1	HTSSOP	PWP	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TPS7A6333QDRKRQ1	VSON	DRK	10	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
TPS7A6333QPWPRQ1	HTSSOP	PWP	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TPS7A6350QPWPRQ1	HTSSOP	PWP	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TPS7A6401QPWPRQ1	HTSSOP	PWP	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1



www.ti.com 5-Dec-2023

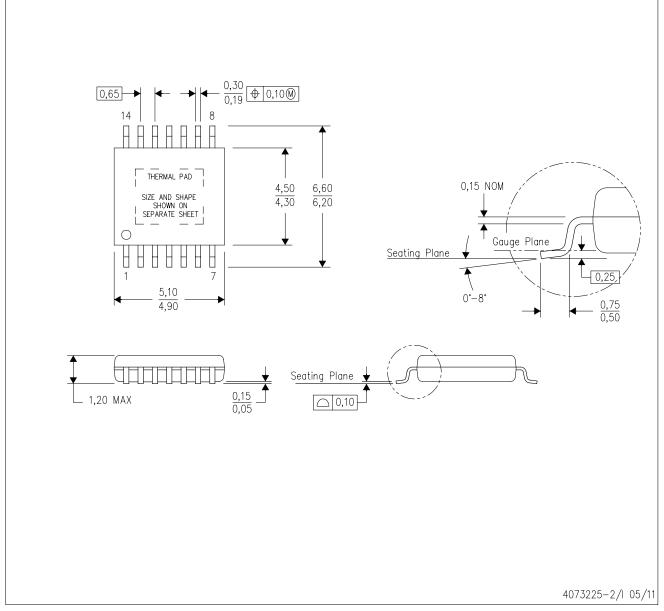
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS7A6301QPWPRQ1	HTSSOP	PWP	14	2000	350.0	350.0	43.0
TPS7A6333QDRKRQ1	VSON	DRK	10	3000	367.0	367.0	35.0
TPS7A6333QPWPRQ1	HTSSOP	PWP	14	2000	350.0	350.0	43.0
TPS7A6350QPWPRQ1	HTSSOP	PWP	14	2000	350.0	350.0	43.0
TPS7A6401QPWPRQ1	HTSSOP	PWP	14	2000	350.0	350.0	43.0


- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5—1994.
 - B. This drawing is subject to change without notice.
 - C. Small Outline No-Lead (SON) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

4.4 x 5.0, 0.65 mm pitch

PLASTIC SMALL OUTLINE


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

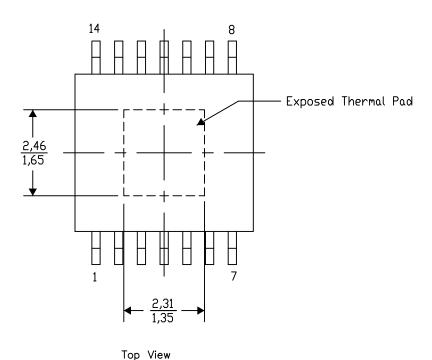
PWP (R-PDSO-G14)

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com>.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.


PWP (R-PDSO-G14) PowerPAD™ SMALL PLASTIC OUTLINE

THERMAL INFORMATION

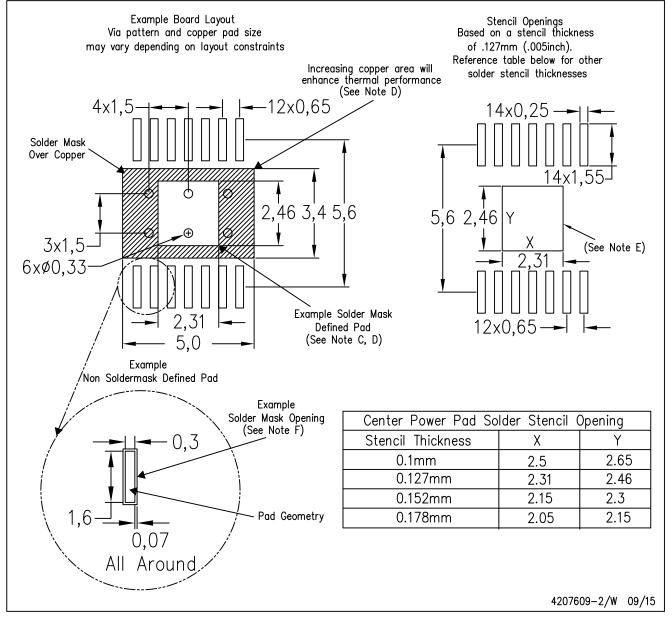
This PowerPADTM package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions

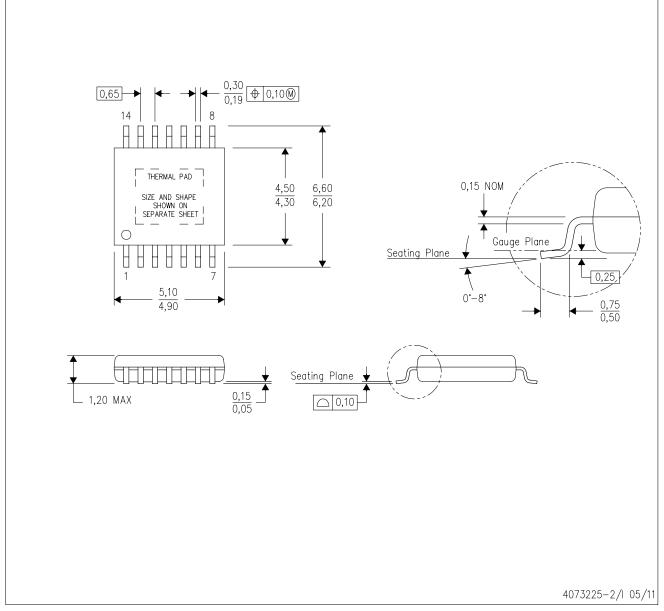
4206332-2/AO 01/16


NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments

PWP (R-PDSO-G14)

PowerPAD™ PLASTIC SMALL OUTLINE


NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

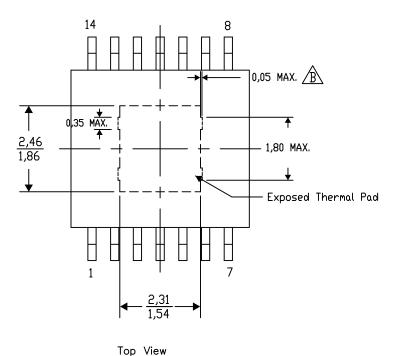
PWP (R-PDSO-G14)

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com>.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.


PWP (R-PDSO-G14) PowerPAD™ SMALL PLASTIC OUTLINE

THERMAL INFORMATION

This PowerPADTM package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

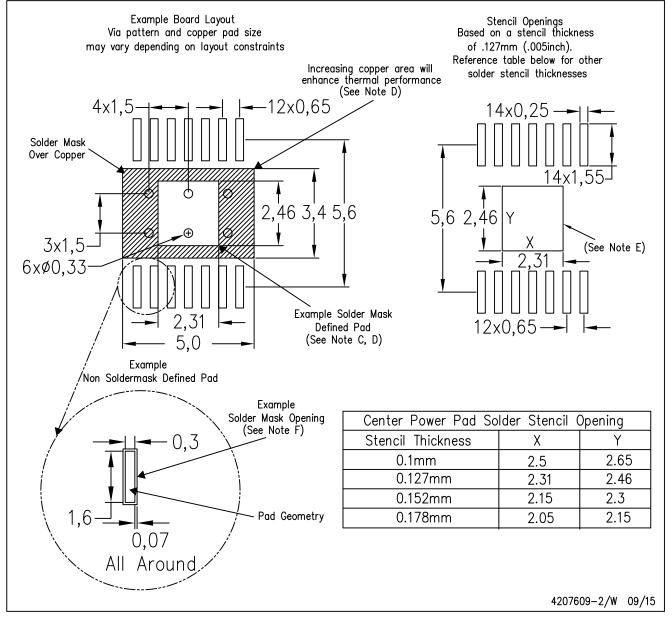
For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions

4206332-44/AO 01/16

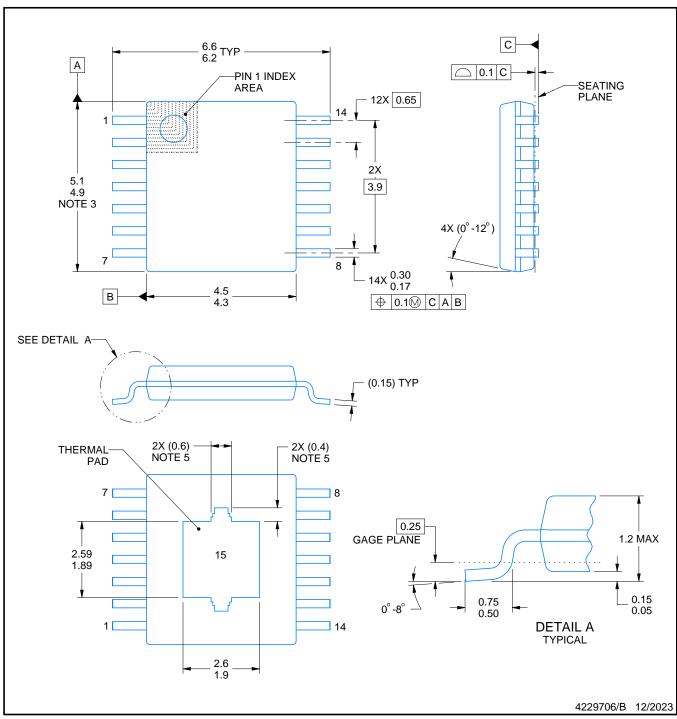
NOTE: A. All linear dimensions are in millimeters


🛕 Exposed tie strap features may not be present.

PowerPAD is a trademark of Texas Instruments

PWP (R-PDSO-G14)

PowerPAD™ PLASTIC SMALL OUTLINE


NOTES:

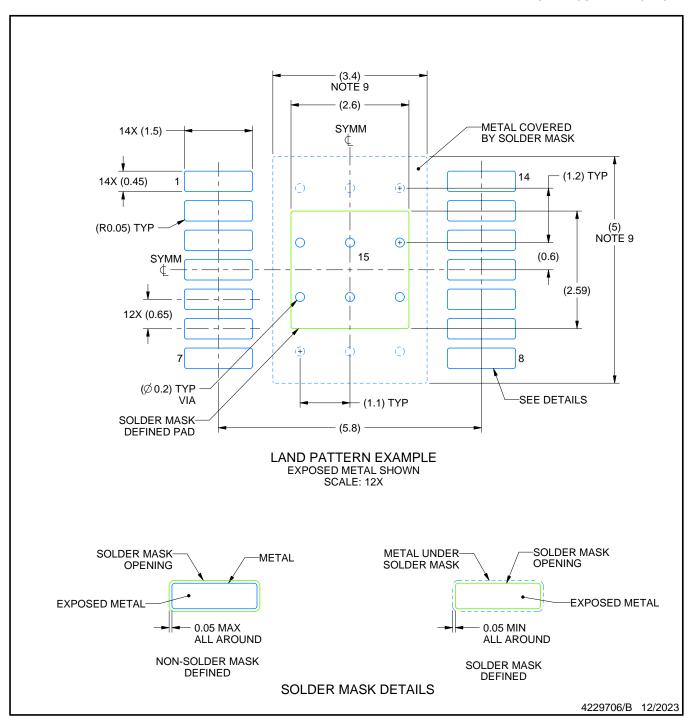
- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD[™] TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

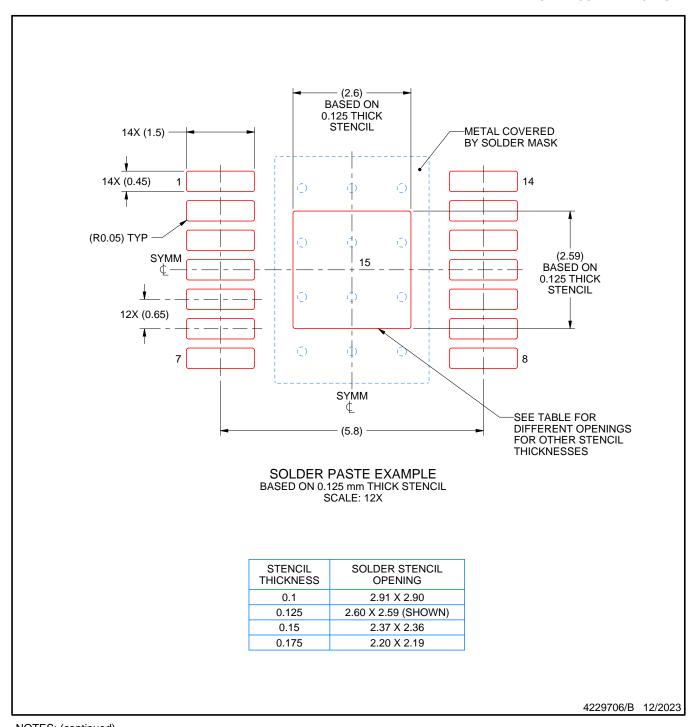
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.
- 5. Features may differ or may not be present.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司