

SGM7223 High Speed USB 2.0 (480Mbps) DPDT Analog Switch

GENERAL DESCRIPTION

The SGM7223 is a high-speed, low-power double-pole/double-throw (DPDT) analog switch that operates from a single 1.8V to 4.3V power supply.

SGM7223 is designed for the switching of high-speed USB 2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os.

The SGM7223 has low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB 2.0 (480 Mbps). Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Its bandwidth is wide enough to pass high-speed USB 2.0 differential signals (480 Mb/s) with good signal integrity.

The SGM7223 contains special circuitry on the D+/D-pins which allows the device to withstand a V_{BUS} short to D+ or D- when the USB devices are either powered off or powered on.

SGM7223 is available in Pb-free TQFN-10 (2.1mm× 1.6mm) package. It operates over an ambient temperature range of -40°C to +85°C.

APPLICATIONS

Route Signals for USB 2.0
MP3 and Other Personal Media Players
Digital Cameras and Camcorders
Portable Instrumentation
Set-Top Box
PDAs

FEATURES

• R_{ON} is Typically 4.5Ω at 3.0V

• Low Bit-to-Bit Skew: 50ps (TYP)

Voltage Operation: 1.8V to 4.3V

Fast Switching Times:

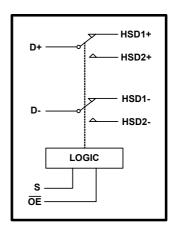
t_{ON} 11ns t_{OFF} 20ns

Low Crosstalk: -33dB at 250MHz

Power-Off Protection when V₊ = 0V,
 D+/D- Pins can Tolerate up to 5.25V

• High Off-Isolation: -30dB at 250MHz

Rail-to-Rail Input and Output Operation


• Break-Before-Make Switching

• Extended Industrial Temperature Range:

-40°C to +85°C

• Lead (Pb) Free TQFN-10 (2.1mm × 1.6mm) Package

BLOCK DIAGRAM

ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION		
SGM7223	TQFN-10 (2.1mm × 1.6mm)	-40℃ to +85℃	SGM7223YTQD10/TR	7223	Tape and Reel, 3000		

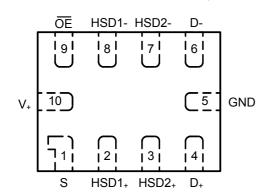
ABSOLUTE MAXIMUM RATINGS

V ₊ , IN to GND	0V to 4.6V
Analog, Digital voltage range	0.3V to (V ₊) + 0.3V
Continuous Current HSDn or Dn	±100mA
Peak Current HSDn or Dn	±150mA
Operating Temperature Range	40°C to +85°C
Junction Temperature	150°C
Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	260°C
ESD Susceptibility	
HBM	4000V
MM	400V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.


ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

FUNCTION TABLE

ŌE	s	HSD1+ HSD1-	HSD2+ HSD2-
0	0	ON	OFF
0	1	OFF	ON
1	×	OFF	OFF

Switches Shown For Logic "0" Input.

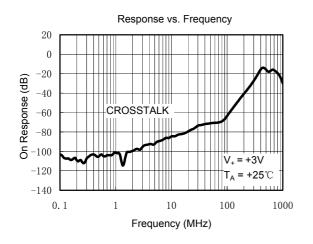
PIN CONFIGURATION (TOP VIEW)

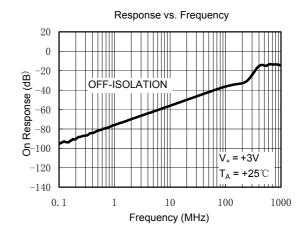
PIN DESCRIPTION

TQFN-10 (2.1mm×1.6mm)	NAME	FUNCTION
10	V_{+}	Power Supply
5	GND	Ground
1	S	Select Input
9	ŌĒ	Output Enable
2, 3, 8, 7, 4, 6	HSD1 ₊ , HSD2 ₊ , HSD1 ₋ , HSD2 ₋ , D ₊ , D ₋	Data Ports

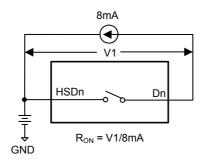
SGM7223

ELECTRICAL CHARACTERISTICS

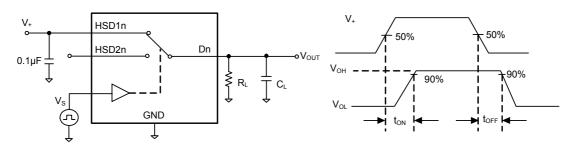

 $(V_{+} = +1.8V \text{ to } +4.3V, \text{ GND} = 0V, V_{IH} = +1.6V, V_{IL} = +0.5V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values are at $V_{+} = +3.3V, T_{A} = +25^{\circ}\text{C}$, unless otherwise noted.)

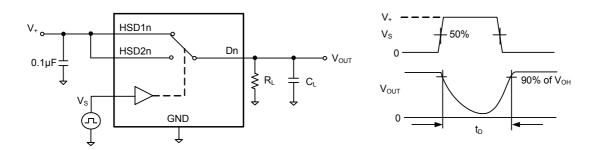

otherwise noted.) PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MΔX	UNITS
ANALOG SWITCH	STWIDOL	CONDITIONS	ILIVIE	IAIIIA	1115	IVIAA	ONTO
Analog I/O Voltage (HSD1+, HSD1-, HSD2+, HSD2-)	V _{IS}		-40°C to +85°C	0		V+	V
0.0.1	Ron	$V_{+} = 3.0V$, $V_{IS} = 0V$ to 0.4V, $I_{D} = 8mA$,	+25°C		4.5	8.5	
On-Resistance		Test Circuit 1	-40°C to +85°C			9	Ω
On-Resistance Match Between	ΔR_{ON}	$V_{+} = 3.0V$, $V_{IS} = 0V$ to 0.4V, $I_{D} = 8mA$,	+25°C		0.2	0.6	Ω
Channels		Test Circuit 1	-40°C to +85°C			1.5	72
On-Resistance Flatness	R _{FLAT(ON)}	$V_{+} = 3.0V$, $V_{IS} = 0V$ to 1.0V, $I_{D} = 8mA$,	+25°C		1.8	2.2	0
OII-Resistance Flatness		Test Circuit 1	-40°C to +85°C			2.8	Ω
Power Off Leakage Current (D+, D-)	l _{OFF}	$V_{+} = 0V$, $V_{D} = 0V$ to 3.6V, V_{S} , $V_{\overline{OE}} = 0V$ or 3.6V	-40°C to +85°C			1	μΑ
Increase in I ₊ per Control Voltage	Ісст	$V_{+} = 3.6V, V_{S} \text{ or } V_{\overline{OE}} = 2.6V$	-40°C to +85°C			5	μΑ
Source Off Leakage Current	I _{HSD2(OFF)} ,I _{HSD1(OFF)}	$V_{+} = 3.6V, V_{ S} = 3.3V/0.3V, V_{D} = 0.3V/3.3V$	-40°C to +85°C			1	μΑ
Channel On Leakage Current	I _{HSD2(ON)} , I _{HSD1(ON)}	$V_{+} = 3.6V, V_{IS} = 3.3V/0.3V, V_{D} = 3.3V/0.3V \text{ or floating}$	-40°C to +85°C			1	μA
DIGITAL INPUTS				ı			
Input High Voltage	V _{IH}		-40°C to +85°C	1.6			V
Input Low Voltage	V_{IL}		-40°C to +85°C			0.5	V
Input Leakage Current	I _{IN}	$V_{+} = 3.0V, V_{S}, V_{\overline{OE}} = 0V \text{ or } V_{+}$	-40°C to +85°C			1	μA
DYNAMIC CHARACTERISTICS					•		
Turn-On Time	t _{ON}	$V_{IS} = 0.8V$, $R_L = 50\Omega$, $C_L = 10pF$,	+25℃		11		ns
Turn-Off Time	t _{OFF}	Test Circuit 2	+25℃		20		ns
Break-Before-Make Time Delay	t _D	V_{IS} = 0.8V, R_L = 50 Ω , C_L = 10pF, Test Circuit 3	+25°C		5		ns
Propagation Delay	t _{PD}	$R_L = 50\Omega$, $C_L = 10pF$	+25°C		0.3		ns
Off Isolation	O _{ISO}	Signal = 0dBm, R_L = 50 Ω , f = 250MHz, Test Circuit 4	+25°C		-30		dB
Channel-to-Channel Crosstalk	X _{TALK}	Signal = 0dBm, R_L = 50 Ω , f = 250MHz, Test Circuit 5	+25°C		-33		dB
–3dB Bandwidth	BW	Signal = 0dBm, R_L = 50 Ω , C_L = 5pF Test Circuit 6	+25°C		500		MHz
Channel-to-Channel Skew	t _{skew}	$R_L = 50\Omega$, $C_L = 10pF$	+25℃		0.05		ns
Charge Injection Select Input to Common I/O	Q	V_G = GND, C_L = 1.0nF, R_G = 0 Ω , Q = C_L x V_{OUT} , Test Circuit 7	+25°C		9.8		рС
HSD+, HSD-, D+, D- ON Capacitance	C _{ON}		+25°C		6.5		pF
POWER REQUIREMENTS							
Power Supply Range	V ₊		-40°C to +85°C	1.8		4.3	V
Power Supply Current	I+	$V_{+} = 3.0 \text{V}, V_{S}, V_{\overline{OE}} = 0 \text{V or } V_{+}$	-40°C to +85°C			1	μA

Specifications subject to changes without notice.

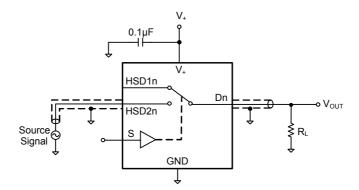


TYPICAL PERFORMANCE CHARACTERISTICS

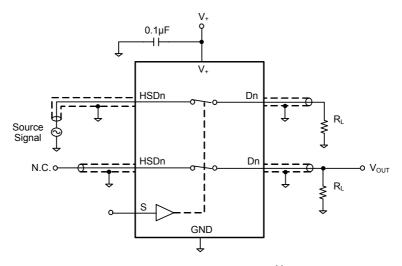



TEST CIRCUITS

Test Circuit 1. On Resistance

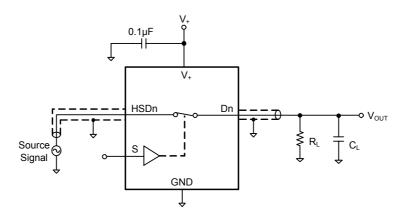


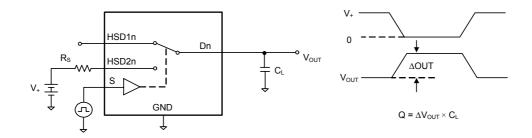
Test Circuit 2. Switching Times ($t_{\text{ON}},\,t_{\text{OFF}}$)



Test Circuit 3. Break-Before-Make Time (t_D)

TEST CIRCUITS (Cont.)


Test Circuit 4. Off Isolation


Channel To Channel Crosstalk = -20 \times log $\frac{V_{HSDn}}{V_{OUT}}$

Test Circuit 5. Channel-to-Channel Crosstalk

TEST CIRCUITS (Cont.)

Test Circuit 6. -3dB Bandwidth

Test Circuit 7. Charge Injection (Q)

APPLICATION NOTES:

Meeting USB 2.0 V_{BUS} Short Requirements

In section 7.1.1 of the USB 2.0 specification, it notes that USB devices must be able to withstand a V_{BUS} short to D+ or D- when the USB devices is either powered off or powered on. The SGM7223 can be successfully configured to meet both these requirements.

Power-Off Protection

For a V_{BUS} short circuit, the switch is expected to withstand such a condition for at least 24 hours. The SGM7223 has specially designed circuitry which prevents unintended signal bleed through as well as guaranteed system reliability during a power-down, over-voltage condition. The protection has been added to the common pins (D+, D-).

Power-On Protection

The USB 2.0 specification also notes that the USB device should be capable of withstanding a V_{BUS} short during transmission of data. This modification works by limiting current flow back into the V+ rail during the over-voltage event so current remains within the safe operating range. In this application, the switch passes the full 5.25V input signal through to the selected output, while maintaining specified off isolation on the un-selected pins.

SGM7223 USB2.0 Signal Quality Compliance Tests

Figures 1 and 2 show the test results for USB eye diagram tests. A summary of the USB tests is provided in Table 1. The SGM7223 passes the high speed signal quality, eye diagram and jitter tests.

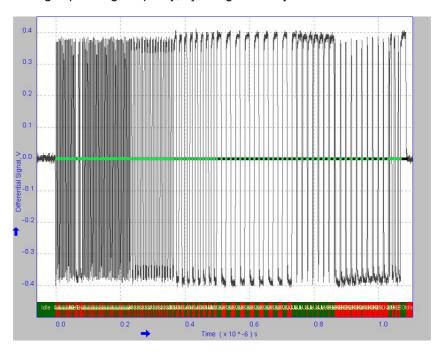


Figure 1. Waveform Plot

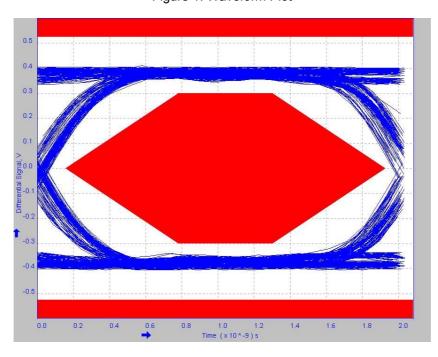


Figure 2. High Speed Signal Quality Eye Diagram Test (V+ = 3.3V)

SGM7223

SGM7223 USB2.0 Signal Quality Compliance Tests (Cont.)

Table 1. Summary of the USB 2.0 Signal Quality Tests Results

Measurement Name	MIN	MAX	Mean	pk-pk	Standard Deviation	RMS	Population	Status
Eye Diagram Test	-	-	-	-	-	-	-	Pass
Signal Rate	467.3807 Mbps	496.5449 Mbps	479.9494 Mbps	0.0000 bps	6.174360 Mbps	480.4821 Mbps	512	Pass
EOP Width	-	-	16.61442ns	1	-	i	1	Pass
EOP Width (Bits)	-	-	7.974082	ı	-	i	1	Pass
Falling Edge Rate	1.100184 kV/µs	1.304518 kV/µs	1.187936 kV/µs	204.3340 V/μs	52.11665 V/μs	1.189068 kV/µs	107	Pass
Rising Edge Rate	1.058148 kV/µs	1.232657 kV/µs	1.137964 kV/µs	174.5099 V/μs	46.35985 V/μs	1.138899 kV/µs	108	Pass


Additional Information:

Consecutive Jitter range: -115.0ps to 71.20ps RMS Jitter 40.26ps KJ Paired Jitter range: -34.68ps to 29.00ps RMS Jitter 11.09ps JK Paired Jitter range: -30.42ps to 35.73ps RMS Jitter 12.11ps

Rising Edge Rate: 1.137964kV/µs (Equivalent Rise Time = 562.41ps)
Falling Edge Rate: 1.187936kV/µs (Equivalent Fall Time = 538.75ps)

PACKAGE OUTLINE DIMENSIONS

TQFN-10 (2.1mm×1.6mm)

Note: All linear dimensions are in millimeters.

12/2008 REV. A

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For information regarding SGMICRO Corporation and its products, see www.sg-micro.com

