

JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.

Plastic-Encapsulate Darlington Transistors

ULN2003A Darlington Transistor (NPN)

1 Introduction

ULN2003A is a high voltage, high current Darlington transistor array. Each device consists of seven NPN Darlington pairs that can be output independently. These Darlington pairs have common emitter poles that support high voltage output with a common cathode clamp diode for switching inductive loads. The input and output of the clamp diode are relatively fixed to simplify the layout of the printed circuit board. The collector current of a single Darlington pair is rated at 500mA, and parallel Darlington pairs provide a higher current.

Each Darlington pair of ULN2003A devices has a $2.7k\Omega$ series base resistance that works directly with TTL or CMOS devices. This device is often used to drive a variety of loads, such as DC engine, LED display light, high power cache and general logic circuits such as TTL, 5V CMOS, etc.

2 Available Package

PART NUMBER	PACKAGE
ULN2003A	SOP16

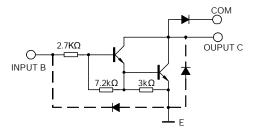


Figure 2-1. Functional Block Diagram

3 Features

- 500mA rated collector current (single output)
- High voltage output: 50V
- Output clamp diode
- Compatible with all kinds of logic input
- Relay driver application

4 Applications

- Relay Drivers
- Hammer Drivers
- Lamp Drivers
- Line Drivers
- Logic Buffers
- Stepper Motors
- IP Camera
- HVAC Valve and LED Dot Matrix

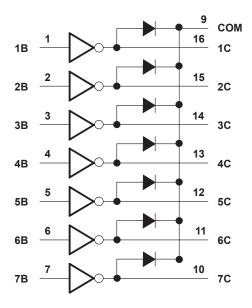


Figure 2-2. Simplified Block Diagram

5 Orderable Information

MODEL	DEVICE	PACKAGE	ОР ТЕМР	ECO PLAN	MSL	PACKING OPTION	SORT
1	ULN2003A	SOP16	-40 ~ 85°C	RoHS & Green	Level 3 168 HR	Tape and Reel 2500 Units / Reel	Active

Note:

ECO PLAN: For the RoHS and Green certification standards of this product, please refer to the official report provided by JSCJ.

MSL: Moisture Sensitivity Level. Determined according to JEDEC industry standard classification.

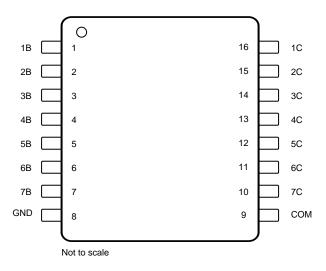
SORT: Specifically defined as follows:

Active: Recommended for new products;

Customized: Products manufactured to meet the specific needs of customers;

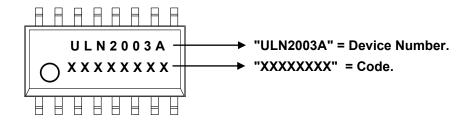
Preview: The device has been released and has not been fully mass produced. The sample may or may not be available; NoRD: It is not recommended to use the device for new design. The device is only produced for the needs of existing

customers;


Obsolete: The device has been discontinued.

6 Pin Configuration and Marking Information

6.1 Pin Configuration and Function


Figure 6-1. SOP16 Package Top View

Pin Functions

Р	PIN		PIN		DESCRIPTION		
NAME	NO.	TYPE					
1B	1						
2B	2						
3B	3						
4B	4	ı	Channel 1 through 7 Darlington base input				
5B	5						
6B	6						
7B	7						
1C	16						
2C	15						
3C	14						
4C	13	0	Channel 1 through 7 Darlington collector output				
5C	12						
6C	11						
7C	10						
GND	8	_	Common emitter shared by all channels (typically tied to ground)				
COM	9	I/O	Common cathode node for flyback diodes (required for inductive loads)				

6.2 Marking Information

7 Specifications

7.1 Absolute Maximum Ratings

at 25°C free-air temperature (unless otherwise specified)(1)

CHARACTERIS	STIC	SYMBOL	VALUE	UNIT	
Output voltage	e ⁽²⁾	V _{OUT}	50	V	
Input voltage	V _{IN}	30	V		
Collector current (co	Ic	500	mA		
Base current (continuous)			I _B	25	mA
Maximum power dissipation ULN2003A SOP16			P _{D MAX}	Internally Limited ⁽³⁾	W
Maximum junction ter	T _{J MAX}	150	°C		
Storage tempera		T _{stg}	-55 ~ 150	°C	

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum rated conditions for extended periods may affect device reliability.

- (2) All voltages are with respect to network ground terminal.
- (3) Refer to Thermal Information for details.

7.2 Recommended Operating Conditions

PARAMETER	SYMBOL	MIN.	NOM.	MAX.	UNIT
Operating junction temperature	TJ	-40	-	125	°C
Operating ambient temperature	TA	-40	-	85	°C

7.3 ESD Ratings

ESD RATING	SYMBOL	VALUE	UNIT	
	Human body model	V _{ESD-HBM}	2000	M
Electrostatic discharge ⁽⁴⁾	Machine model	V _{ESD-MM}	200	V

(4) ESD testing is conducted in accordance with the relevant specifications formulated by the Joint Electronic Equipment Engineering Commission (JEDEC). The human body model (HBM) electrostatic discharge test is based on the JESD22-114D test standard, using a 100pF capacitor and discharging to each pin of the device through a resistance of $1.5k\Omega$. The electrostatic discharge test in mechanical model (MM) is based on the JESD22-A115-A test standard and uses a 200pF capacitor to discharge directly to each pin of the device.

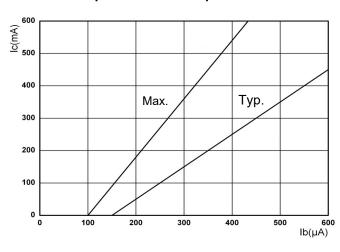
7 Specifications

7.4 Thermal Information

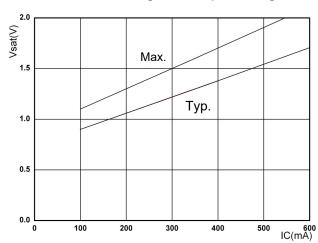
THERMAL MET	SYMBOL	SOP16	UNIT		
Thermal registeres	Junction-to-ambient	Roja	100.0	°C/\\\	
Thermal resistance	Junction-to-case	Rөлс	20.0	- °C/W	
Reference maximum power dissipation for continuous operation		P _{D Ref}	1.00	W	

7.5 Electrical Characteristics

at 25°C free-air temperature (unless otherwise specified)


CHARACTERISTIC	SYMBOL	TEST CONDITIONS	FIGURES	MIN.	TYP. ⁽⁶⁾	MAX.	UNIT
Collector cutoff current	ICEX	V _{CE} = 50V	1a	-	-	50.0	μΑ
		I _C = 100mA, I _B = 250μA		-	0.9	1.1	V
Collector-emitter saturation voltage	VCE (SAT)	I _C = 200mA, I _B = 350μA	2	-	1.1	1.3	
Saturation Voltage		I _C = 350mA, I _B = 500μA	 	-	1.3	1.6	
Input current (ON)	lin (on)	V _{IN} = 3.85V	3	-	0.93	1.35	mA
	Vin (on)	V _{CE} = 2.0V, I _C = 200mA	5	-	-	2.4	V
Input voltage (ON)		V _{CE} = 2.0V, I _C = 250mA		-	-	2.7	
		V _{CE} = 2.0V, I _C = 300mA		-	-	3.0	
Clamp reverse current	I _R	V _R = 50V	6	-4.0	-	50	μΑ
Clamp forward voltage	VF	I _F = 350mA	7	-	1.7	2.0	V
Output leakage current	I _{CEX-1V}	V _{CE} = 50V, V _{IN} = 1.0V	1b	-5.0	-	80	μΑ

Note:


(6) Typical numbers are at 25°C and represent the most likely norm.

7.6 Typical Characteristics

Output Current vs. Input Current

Saturation Voltage vs. Output Voltage

8 Parameter Measurement Information

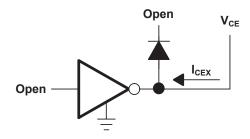


Figure 1a. I_{CEX} Test Circuit

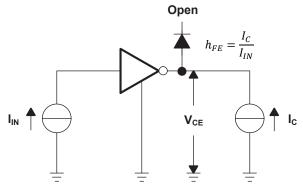
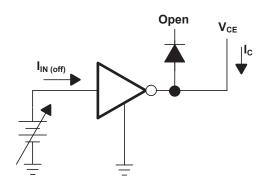



Figure 2. h_{FE} , $V_{CE\,(SAT)}$ Test Circuit

 I_{IN} is fixed when used to measure V_{CE} and variable when used to measure h_{FE}

Figure 4. I_{IN (off)} Test Circuit

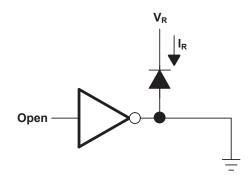


Figure 6. I_R Test Circuit

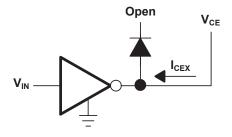


Figure 1b. I_{CEX} Test Circuit

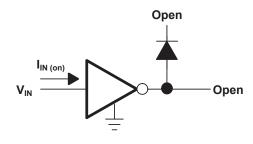


Figure 3. I_{IN} Test Circuit

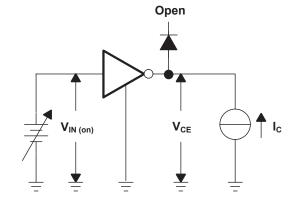
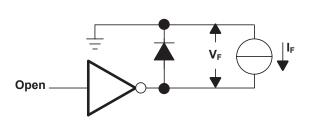
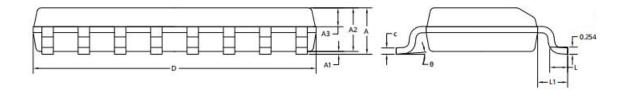
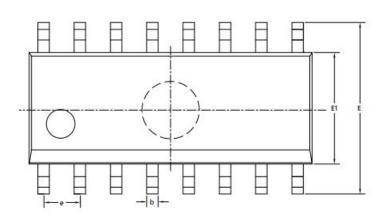


Figure 5. V_{IN (on)} Test Circuit


Figure 7. V_F Test Circuit

9 Mechanical Information

SOP16 Package

CVMPOL	DIMENSI	ONS IN MIL	LIMETERS	DIMEN	ISIONS IN IN	NCHES
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.500	1.600	1.700	0.059	0.063	0.068
A1	0.100	0.150	0.250	0.004	0.006	0.010
A2	1.400	1.450	1.500	0.055	0.057	0.059
A3	0.600	0.650	0.700	0.024	0.026	0.028
b	0.300	0.400	0.500	0.012	0.016	0.020
С	0.150	0.200	0.250	0.006	0.008	0.010
D	9.800	9.900	10.000	0.386	0.390	0.394
E	5.800	6.000	6.200	0.228	0.236	0.244
E1	3.850	3.900	3.950	0.152	0.154	0.156
е		1.270 Bsc).		0.050 Bsc.	
L	L 0.500 0.600		0.700	0.020	0.024	0.028
L1		1.050 Bsc	:.		0.041 Bsc.	
Θ	0°	4°	8°	0°	4°	8°

10 Notes and Revision History

10.1 Associated Product Family and Others

To view other products of the same type or IC products of other types, please click the official website of JSCJ -- *https: www.jscj-elec.com* for more details.

10.2 Notes

Electrostatic Discharge Caution

This IC may be damaged by ESD. Relevant personnel shall comply with correct installation and use specifications to avoid ESD damage to the IC. If appropriate measures are not taken to prevent ESD damage, the hazards caused by ESD include but are not limited to degradation of integrated circuit performance or complete damage of integrated circuit. For some precision integrated circuits, a very small parameter change may cause the whole device to be inconsistent with its published specifications.

10.3 Revision History

January, 2023: changed from rev - 1.3 to rev - 1.4:

- Page 3, Marking Information, corrected errors in marking schematic diagram;
- Page 5, Typical Characteristics, fixed errors in curve 1 names.

October, 2023: changed from rev -1.2 to rev - 1.3:

- Page 4, Specifications, added ESD ratings;
- Page 5, Thermal Information, R_{⊙JA} changed from 75.2 to 100, P_{D REF} changed from 1.33 to 1.00, added R_{⊙JC};
- Page 8, Notes, removed the notes of the thermal metric.

April, 2023: changed from rev - 1.1 to rev - 1.2:

- Page 2, Orderable Information, "OP TEMP" changed from "-20 ~ 85°C" to "-40 ~ 85°C";
- Page 4, Recommend Operating Condition, "T_A" changed from "-20 ~ 85°C" to "-40 ~ 85°C".

January, 2023: changed from rev - 1.0 to rev - 1.1:

- Added the part "Orderable Information".
- Page 4, Absolute Maximum Ratings, Collector current changed from "(continuous)" to "(peak)".

August, 2022: released ULN2003A rev - 1.0.

DISCLAIMER

IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. JSCJ has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses JSCJ products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. JSCJ makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of JSCJ, this product shall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, military facilities and aerospace. JSCJ shall not be responsible for casualties or property losses caused by abnormal use or application of this product.

Official Website: www.jscj-elec.com