

TPS61099

ZHCSFH7L - JULY 2016 - REVISED AUGUST 2021

TPS61099x 静态电流极低的同步升压转换器

1 特性

- 600nA 超低 Io 流入 Vout 引脚
- 400nA 超低 I_Q 流入 V_{IN} 引脚
- 工作输入电压范围为 0.7V 至 5.5V
- 可调输出电压范围为 1.8V 至 5.5V
- 可提供固定输出电压版本
- 最小 0.8A 开关峰值电流限制
- 降压模式下提供稳压输出电压
- 关断期间真正断开连接
- 使用固定输出电压版本时,10µA 负载条件下的效 率高达 75%
- 在 10mA 至 300mA 负载下具有高达 93% 的效率
- 6 焊球 1.23mm × 0.88mm WCSP 封装和 2mm × 2mm WSON 封装
- 使用 TPS61099x 并借助 WEBENCH® Power Designer 创建定制设计方案

2 应用

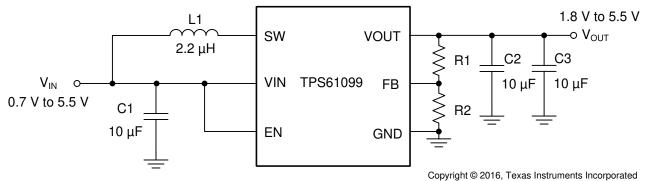
- 记忆 LCD 偏压
- 光学心率监测 LED 偏压
- 可穿戴应用
- 低功耗无线应用
- 便携式产品
- 电池供电型系统

3 说明

TPS61099x 器件是一款具有 1µA 超低静态电流的同步 升压转换器。该器件专为由碱性电池、镍氢充电电池、 锂锰电池或锂离子充电电池供电的产品而设计,能够在 轻载条件下高效运行,这对延长电池使用寿命至关重

TPS61099x 升压转换器采用迟滞控制拓扑,能够以最 小静态电流实现最高的效率。该器件在轻载条件下仅消 耗 1µA 静态电流,在 10µA 负载下可实现高达 75% 的 效率(固定输出电压版本)。此外,该器件在 3.3V 至 5V 转换过程中支持高达 300mA 的输出电流,在 200mA 负载条件下可实现高达 93% 的效率。

TPS61099x 还为不同应用提供降压模式和直通操作。 在降压模式下,即使输入电压高于输出电压,输出电压 仍可调节为目标值。在直通模式下,输出电压与输入电 压保持一致。当 V_{IN} > V_{OUT} + 0.5V 时, TPS61099x 退出降压模式并转入直通模式。


TPS61099x 在禁用状态下能够将负载与输入电源断 开,真正实现关断,从而降低电流消耗。

TPS61099x 具有可调输出电压版本和固定输出电压版 本。该器件采用 6 焊球 1.23mm × 0.88mm WCSP 封 装和 6 焊球 2mm × 2mm WSON 封装。

器件信息

器件型号	封装 ⁽¹⁾	封装尺寸 (标称值)				
TPS61099	WCSP (6)	1.23mm × 0.88mm				
TPS61099x	WC3F (0)	1.2311111 ^ 0.00111111				
TPS61099	WSON (6)	2mm × 2mm				
TPS61099x	WSON (6)	2111111 ^ 2111111				

如需了解所有可用封装,请参阅本文档末尾的可订购产品附 录。

典型应用电路

Table of Contents

1 特性	1	9 Application and Implementation	14
,		9.1 Application Information	14
- <i>-</i>		9.2 Typical Application - 5 V Output Boost Converte	r14
4 Revision History		10 Power Supply Recommendations	18
5 Device Comparison Table		11 Layout	
6 Pin Configuration and Functions		11.1 Layout Guidelines	
7 Specifications		11.2 Layout Example	19
7.1 Absolute Maximum Ratings		12 Device and Documentation Support	21
7.2 ESD Ratings		12.1 Device Support	
7.3 Recommended Operating Conditions		12.2 Documentation Support	
7.4 Thermal Information		12.3 接收文档更新通知	<mark>2</mark> 1
7.5 Electrical Characteristics		12.4 支持资源	21
7.6 Typical Characteristics		12.5 Trademarks	22
8 Detailed Description		12.6 Electrostatic Discharge Caution	22
8.1 Overview		12.7 术语表	
8.2 Functional Block Diagram	10	13 Mechanical, Packaging, and Orderable	
8.3 Feature Description	10	Information	22
8.4 Device Functional Modes	13		

4 Revision History

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision K (May 2018) to Revision L (August 2021)	Page
• 更新了整个文档中的表格、图和交叉参考的编号格式	1
Changes from Revision J (October 2017) to Revision K (May 2018)	Page
Added Load Efficiency graph for TPS610995 device	7

Product Folder Links: TPS61099

5 Device Comparison Table

PART NUMBER	OUTPUT VOLTAGE
TPS61099	Adjustable
TPS610997	5.0 V
TPS610996	4.5 V
TPS610995	3.6 V
TPS610994	3.3 V
TPS610993	3.0 V
TPS610992	2.5 V
TPS610991 ⁽¹⁾	1.8 V

(1) Product Preview. Contact TI factory for more information.

6 Pin Configuration and Functions

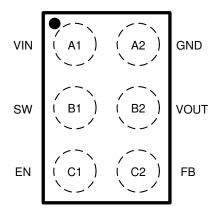


图 6-1. YFF Package 6-Pin YFF Top View

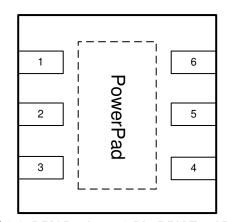


图 6-2. DRV Package 6-Pin DRV Top View

表 6-1. Pin Functions

PIN		PIN		DESCRIPTION
NAME	YFF	DRV	TYPE	DESCRIPTION
VIN	A1	6	ı	IC power supply input
SW	B1	5	PWR	Switch pin of the converter. It is connected to the inductor
EN	C1	4	I	Enable logic input. Logic high voltage enables the device; logic low voltage disables the device. Do not leave it floating.
GND	A2	1	PWR	Ground
VOUT	B2	2	PWR	Boost converter output
FB	C2	3	ı	Voltage feedback of adjustable output voltage. Connect to the center tap of a resistor divider to program the output voltage. Connect to GND pin for fixed output voltage versions.
PowerPad		7		Connect to GND

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Voltage range at terminals ⁽²⁾	VIN, SW, VOUT, FB, EN	-0.3	6.0	V
Operating junction temperature, T		- 40	150	°C
Storage temperature range, T _{stg}		- 65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

		VALUE	UNIT
	Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	V
$V_{(ESD)}$	Charged Device Model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	

⁽¹⁾ JEDEC document JEP155 states that 500V HBM rating allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
V _{IN}	Input voltage range	0.7		5.5	V
V _{OUT}	Output voltage range	1.8		5.5	V
L	Inductor	0.7	2.2	2.86	μH
C _{IN}	Input capacitor	1.0	10		μF
C _{OUT}	Output capacitor	10	20	100	μF
TJ	Operating virtual junction temperature	- 40		125	°C

7.4 Thermal Information

		TPS6		
	THERMAL METRIC ⁽¹⁾	YFF (6 BALLS, WCSP)	DRV(6 PINS, WSON)	UNIT
R ₀ JA	Junction-to-ambient thermal resistance	134.4	71.7	°C/W
R ₀ JCtop	Junction-to-case (top) thermal resistance	0.9	83.0	°C/W
R ₀ JB	Junction-to-board thermal resistance	36.1	33.9	°C/W
ψ ЈТ	Junction-to-top characterization parameter	0.1	2.7	°C/W
ψ ЈВ	Junction-to-board characterization parameter	36.2	33.4	°C/W
R _{θ JCbot}	Junction-to-case (bottom) thermal resistance	N/A	14.4	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

Product Folder Links: TPS61099

⁽²⁾ All voltage values are with respect to network ground terminal.

⁽²⁾ JEDEC document JEP157 states that 250V CDM rating allows safe manufacturing with a standard ESD control process.

7.5 Electrical Characteristics

 T_J = -40°C to 125°C and V_{IN} = 0.7 V to 5.5 V. Typical values are at V_{IN} = 3.7 V, T_J = 25°C, unless otherwise noted.

	PARAMETER	Version	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
POWER SUPPLY									
V _{IN}	Input voltage range	TPS61099x		0.7		5.5	V		
V _{UVLO}	Input under voltage lockout threshold	TPS61099x	V _{IN} rising		0.6	0.7	V		
	UVLO hysteresis	TPS61099x			200		mV		
	Quiescent current into VIN pin	TPS61099x			0.4	1.1	μA		
IQ	Quiescent current into VOUT pin	TPS61099x	Boost or Down Mode		0.6	1.5	μA		
I _{SD}	Shutdown current into VIN pin	TPS61099x			0.5	1.6	μΑ		
OUTPUT		•		•					
V _{OUT}	Output voltage range	TPS61099		1.8		5.5	V		
		TD9610007	VIN < VOUT, PWM mode	4.90	5.00	5.10	V		
		1173010997	VIN < VOUT, PFM mode		5.15				
		TD9610004	VIN < VOUT, PWM mode	3.23	3.30	3.37	V		
		125610994	VIN < VOUT, PFM mode		3.4				
		TD0040000	VIN < VOUT, PWM mode	2.94	3.0	3.06			
		1PS610993	VIN < VOUT, PFM mode		3.1		V		
	Output accuracy	TD004000	VIN < VOUT, PWM mode	4.4	4.5	4.6	.,		
		TPS610996	VIN < VOUT, PFM mode		4.63		V		
		TPS610992	VIN < VOUT, PWM mode	2.45	2.5	2.55			
			VIN < VOUT, PFM mode		2.58		V		
		TPS610995	VIN < VOUT, PWM mode	3.53	3.6	3.67			
			VIN < VOUT, PFM mode		3.71		V		
V _{REF}	Feedback reference voltage	TPS61099	V _{IN} < V _{OUT} , PWM mode	0.98	1.00	1.02	V		
		TPS61099	V _{IN} < V _{OUT} , PFM mode		1.03		V		
V _{OVP}	Output overvoltage protection threshold	TPS61099x	V _{OUT} rising	5.6	5.8	6.0	V		
		TPS61099x			100	200	mV		
I _{FB LKG}	Leakage current into FB pin	TPS61099x	V _{FB} = 1.0 V		10	50	nA		
_			1.0						
			V _{OUT} = 5.0 V		250		mΩ		
Rne(on) Le	Low side switch on resistance	TPS61099x	20			mΩ			
· -D3(011)_L3	Input voltage range Input under voltage lockout threshold UVLO hysteresis Quiescent current into VIN pin Quiescent current into VOUT pin Shutdown current into VIN pin T Output voltage range T Output accuracy T Feedback reference voltage T Output overvoltage protection threshold T OVP hysteresis Leakage current into FB pin WITCH Low side switch on resistance T Inductor current ripple T Current limit threshold T Current limit threshold T Lockage current into SW pin (from SW)				400		mΩ		
			***			350	mΩ		
В	Destifier on registance	TD064000v							
R _{DS(on)_HS}	Recuiler on resistance	TPS61099x				450	mΩ		
			***		500	750	mΩ		
		TD004			350		mA		
I _{LH}	Inductor current ripple	TPS61099x			300		mA		
					250		mA		
I _{LIM}	Current limit threshold	TPS61099x			1	1.25	Α		
			V _{OUT} < 2.5 V, boost operation	0.5	0.75		Α		
I _{SW_LKG}		TPS61099x	V_{SW} = 5.0 V, no switch, T_J = -40 °C to 85 °C			200	nA		

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

7.5 Electrical Characteristics (continued)

 T_J = -40°C to 125°C and V_{IN} = 0.7 V to 5.5 V. Typical values are at V_{IN} = 3.7 V, T_J = 25°C, unless otherwise noted.

	PARAMETER	Version	TEST CONDITIONS	MIN	TYP M	X UNIT
CONTRO	L LOGIC	-				
V _{IL}	EN input low voltage threshold	TPS61099x	$V_{IN} \leqslant 1.5 \text{ V}$	0.2 x VIN		V
V _{IH}	EN input high voltage threshold	TPS61099x	$V_{IN} \leqslant 1.5 \text{ V}$		0.8 V	X N
V _{IL}	EN input low voltage threshold	TPS61099x	V _{IN} > 1.5 V	0.4		V
V _{IH}	EN input high voltage threshold	TPS61099x	V _{IN} > 1.5 V			.2 V
I _{EN_LKG}	Leakage current into EN pin	TPS61099x	V _{EN} = 5.0 V			50 nA
	Overtemperature protection	TPS61099x			150	°C
	Overtemperature hysteresis	TPS61099x			25	°C

Product Folder Links: TPS61099

7.6 Typical Characteristics

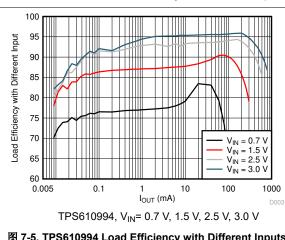
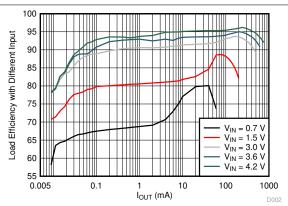
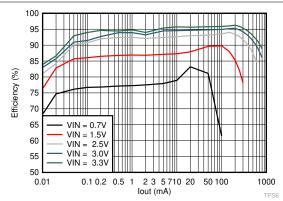
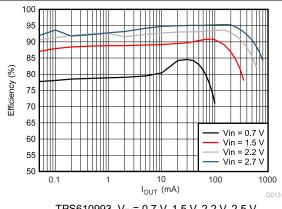




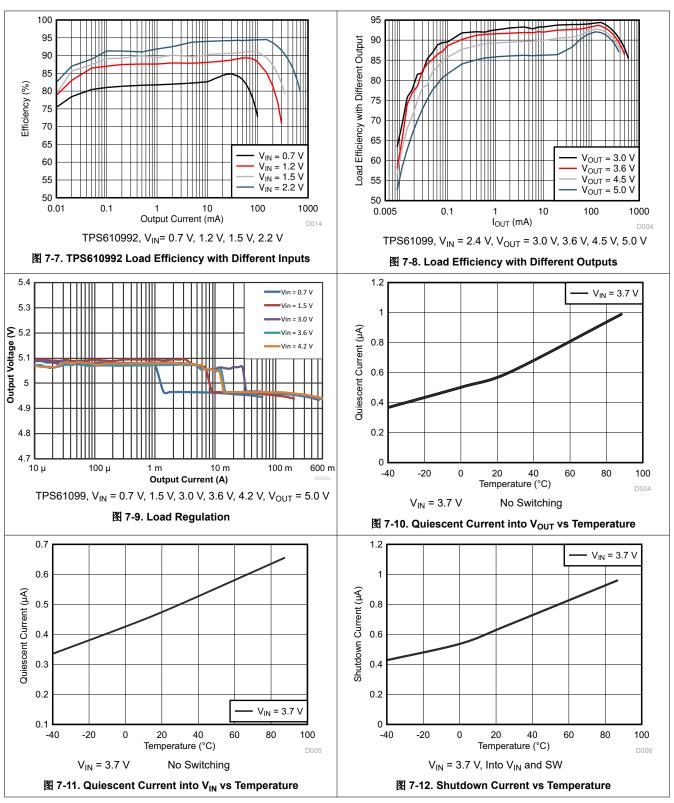
图 7-5. TPS610994 Load Efficiency with Different Inputs



TPS610997, V_{IN}= 0.7 V, 1.5 V, 3.0 V, 3.6 V, 4.2 V

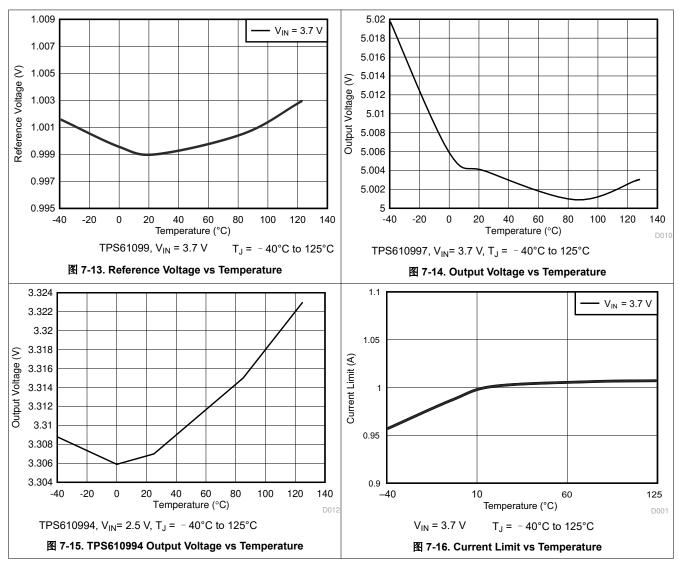
TPS610995, V_{IN}= 0.7 V, 1.5 V, 2.0, 3.0 V, 3.3 V

图 7-4. TPS610995 Load Efficiency with Different Inputs



TPS610993, V_{IN} = 0.7 V, 1.5 V, 2.2 V, 2.5 V

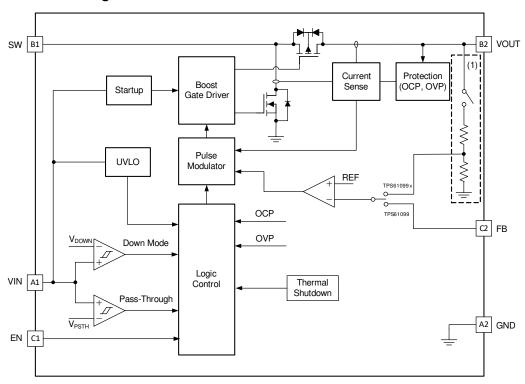
图 7-6. TPS610993 Load Efficiency with Different Inputs


7.6 Typical Characteristics (continued)

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

7.6 Typical Characteristics (continued)


8 Detailed Description

8.1 Overview

The TPS61099x synchronous step-up converter is designed for alkaline battery, coin-cell battery, Li-ion or Li-polymer battery powered systems, which requires long battery running time and tiny solution size. The TPS61099x can operate with a wide input voltage from 0.7 V to 5.5 V. It only consumes 1 μ A quiescent current and can achieve high efficiency under light load condition.

The TPS61099x operates in a hysteretic control scheme with typical 1-A peak switch current limit. The TPS61099x provides the true shutdown function and the load is completely disconnected from the input so as to minimize the leakage current. It also adopts Down Mode and Pass-Through operation when input voltage is close to or higher than the regulated output voltage. The TPS61099x family is available in both adjustable and fixed output voltage versions. Adjustable version offers programmable output voltage for flexible applications while fixed versions offer minimal solution size and achieve up to 75% high efficiency under 10-µA load.

8.2 Functional Block Diagram

A. Internal FB resistor divider is implemented in fixed output voltage versions.

图 8-1. Functional Block Diagram

8.3 Feature Description

8.3.1 Boost Controller Operation

The TPS61099x boost converter is controlled by a hysteretic current mode controller. This controller regulates the output voltage by keeping the inductor ripple current constant in the range of 300 mA and adjusting the offset of this inductor current depending on the output load. Since the input voltage, output voltage and inductor value all affect the rising and falling slopes of inductor ripple current, the switching frequency is not fixed and is determined by the operation condition. If the required average input current is lower than the average inductor current defined by this constant ripple, the inductor current goes discontinuously to keep the efficiency high under light load condition. 88 8-2 illustrates the hysteretic current operation. If the load current is reduced further, the boost converter enters into Burst mode. In Burst mode, the boost converter ramps up the output voltage with several switching cycles. Once the output voltage exceeds a setting threshold, the device stops switching and

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

goes into a sleep status. In sleep status, the device consumes less quiescent current. It resumes switching when the output voltage is below the setting threshold. It exits the Burst mode when the output current can no longer be supported in this mode. Refer to 88 8-3 for Burst mode operation details.

To achieve high efficiency, the power stage is realized as a synchronous boost topology. The output voltage V_{OUT} is monitored via an external or internal feedback network which is connected to the voltage error amplifier. To regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage reference and adjusts the required offset of the inductor current accordingly.

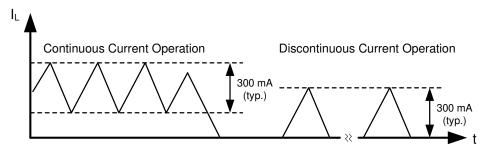


图 8-2. Hysteretic Current Operation

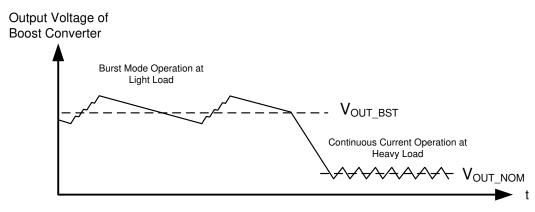


图 8-3. Burst Mode Operation

8.3.2 Under-Voltage Lockout

An under-voltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below the typical UVLO threshold of 0.4 V. A hysteresis of 200 mV is added so that the device cannot be enabled again until the input voltage goes up to 0.6 V. This function is implemented in order to prevent malfunctioning of the device when the input voltage is between 0.4 V and 0.6 V.

8.3.3 Enable and Disable

When the input voltage is above UVLO rising threshold and the EN pin is pulled to high voltage, the TPS61099x is enabled. When the EN pin is pulled to low voltage, the TPS61099x goes into shutdown mode. In shutdown mode, the device stops switching and the rectifying PMOS fully turns off, providing the completed disconnection between input and output. Less than 0.5-µA input current is consumed in shutdown mode.

8.3.4 Soft Start

After the EN pin is tied to high voltage, the TPS61099x begins to startup. At the beginning, the device operates at the boundary of Discontinuous Conduction Mode (DCM) and Continuous Conduction Mode (CCM), and the inductor peak current is limited to around 200 mA during this stage. When the output voltage is charged above approximately 1.6 V, the device starts the hysteretic current mode operation. The current limit threshold is gradually increasing to $0.7 \times I_{LIM}$ within 500 μ s. In this way, the soft start function reduces the inrush current during startup. After V_{OUT} reaches the target value, soft start stage ends and the peak current is now determined by the output of an internal error amplifier which compares the feedback of the output voltage and the internal reference voltage.

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

The TPS61099x is able to start up with 0.7-V input voltage with larger than $3-k\Omega$ load. However, if the load during startup is so heavy that the TPS61099x fails to charge the output voltage above 1.6 V, the TPS61099x can't start up successfully until the input voltage is increased or the load current is reduced. The startup time depends on input voltage and load current.

8.3.5 Current Limit Operation

The TPS61099x employs cycle-by-cycle over-current protection (OCP) function. If the inductor peak current reaches the current limit threshold I_{LIM} , the main switch turns off so as to stop further increase of the input current. In this case the output voltage will decrease until the power balance between input and output is achieved. If the output drops below the input voltage, the TPS61099x enters into Down Mode. The peak current is still limited by I_{LIM} cycle-by-cycle in Down Mode. If the output drops below 1.6 V, the TPS61099 enters into startup process again. In Pass-Through operation, current limit function is not enabled.

8.3.6 Output Short-to-Ground Protection

The TPS61099x starts to limit the switch current to 200 mA when the output voltage is below 1.6 V. If short-to-ground condition occurs, switch current is limited at 200 mA. Once the short circuit is released, the TPS61099x goes back to soft start again and regulates the output voltage.

8.3.7 Over Voltage Protection

TPS61099x has an output over-voltage protection (OVP) to protect the device in case that the external feedback resistor divider is wrongly populated. When the output voltage of the TPS61099 exceeds the OVP threshold of 5.8 V, the device stops switching. Once the output voltage falls 0.1 V below the OVP threshold, the device starts operating again.

8.3.8 Down Mode Regulation and Pass-Through Operation

The TPS61099x features Down Mode and Pass-Through operation when input voltage is close to or higher than output voltage.

In the Down Mode, output voltage is regulated at target value even when $V_{\text{IN}} > V_{\text{OUT}}$. The control circuit changes the behavior of the rectifying PMOS by pulling its gate to input voltage instead of to ground. In this way, the voltage drop across the PMOS is increasing as high as to regulate the output voltage. The power loss also increases in this mode, which needs to be taken into account for thermal consideration.

In the Pass-Through operation, the boost converter stops switching. The rectifying PMOS constantly turns on and low side switch constantly turns off. The output voltage is the input voltage minus the voltage drop across the dc resistance (DCR) of the inductor and the on-resistance of the rectifying PMOS.

With V_{IN} ramping up, the TPS61099x goes into Down Mode first when $V_{IN} > V_{OUT} - 50$ mV. It stays in Down Mode until $V_{IN} > V_{OUT} + 0.5$ V and then goes automatically into Pass-Through operation. In the Pass-Through operation, output voltage follows input voltage. The TPS61099x exits Pass-Through Mode and goes back to Down Mode when V_{IN} ramps down to 103% of the target output voltage. It stays in Down Mode until input voltage falls 100mV below the output voltage, returning to Boost operation.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

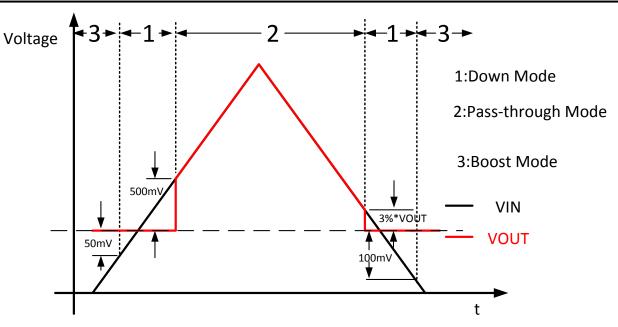


图 8-4. Down Mode and Pass-Through Operation

8.3.9 Thermal Shutdown

The TPS61099x has a built-in temperature sensor which monitors the internal junction temperature in boost mode operation. If the junction temperature exceeds the threshold 150°C, the device stops operating. As soon as the junction temperature drops below the shutdown temperature minus the hysteresis, typically 125°C, it starts operating again.

8.4 Device Functional Modes

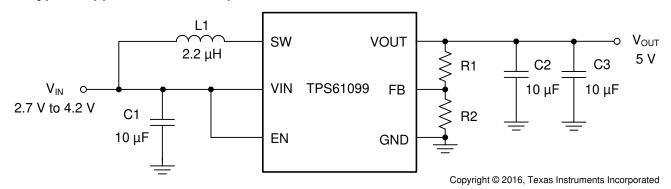
8.4.1 Burst Mode Operation under Light Load Condition

The boost converter of TPS61099x enters into Burst Mode operation under light load condition. Refer to *Boost Controller Operation* for details.

8.4.2 Down Mode Regulation and Pass-Through Mode Operation

The boost converter of TPS61099x automatically enters into Down Mode or pass-through mode operation when input voltage is higher than the target output voltage. Refer to *Down Mode Regulation and Pass-Through Operation* for details.

9 Application and Implementation


Note

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1 Application Information

The TPS61099x is a synchronous boost converter designed to operate at a wide input voltage from 0.7 V to 5.5 V with 1-A peak switch current limit. The device adopts a hysteretic control scheme so the operating frequency is not a constant value, which varies with different input/output voltages and inductor values. It only consumes 1-µA quiescent current under light load condition. It also supports true shutdown to disconnect the load from the input in order to minimize the leakage current. Therefore, it is very suitable for alkaline battery, coin-cell battery, Li-ion or Li-polymer battery powered systems to extend the battery running time.

9.2 Typical Application - 5 V Output Boost Converter

9.2.1 Design Requirements

A typical application example is the memory LCD, which normally requires 5-V output as its bias voltage and only consumes less than 1 mA current. The following design procedure can be used to select external component values for the TPS61099x.

 PARAMETERS
 VALUES

 Input Voltage
 2.7 V ~ 4.2 V

 Output Voltage
 5 V

 Output Current
 1 mA

 Output Voltage Ripple
 ± 50 mV

表 9-1. Design Requirements

9.2.1.1 Detailed Design Procedure

9.2.1.1.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPS61099 device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- · Run electrical simulations to see important waveforms and circuit performance
- · Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats

Submit Document Feedback

Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

9.2.1.1.2 Programming the Output Voltage

There are two ways to set the output voltage of the TPS61099x. For adjustable output voltage version, select the external resistor divider R1 and R2, as shown in 1, the output voltage is programmed to the desired value. When the output voltage is regulated, the typical voltage at the FB pin is V_{REF} of 1.0 V.

$$V_{OUT} = V_{REF} \cdot \frac{R1 + R2}{R2} \tag{1}$$

For fixed output voltage versions, the FB pin should be connected to the GND. The TPS61099x offers diverse fixed voltage versions, refer to *Device Comparison Table* for version details.

In this example, 5-V output is required to bias the memory LCD. For the best accuracy, the current following through R2 should be 100 times larger than FB pin leakage current. Changing R2 towards a lower value increases the robustness against noise injection. Changing R2 towards higher values reduces the FB divider current for achieving the highest efficiency at low load currents. 1-M Ω and 249-k Ω resistors are selected for R1 and R2 in this example. High accuracy resistors are recommended for better output voltage accuracy.

9.2.1.1.3 Maximum Output Current

The maximum output capability of the TPS61099x is determined by the input to output ratio and the current limit of the boost converter. It can be estimated by 方程式 2.

$$I_{OUT(max)} = \frac{V_{IN} \cdot (I_{LIM} - \frac{I_{LH}}{2}) \cdot \eta}{V_{OUT}}$$
(2)

where

- η is the conversion efficiency, use 85% for estimation
- I_{LH} is the current ripple value
- I_{LIM} is the switch current limit

Minimum input voltage, maximum boost output voltage and minimum current limit I_{LIM} should be used as the worst case condition for the estimation.

9.2.1.1.4 Inductor Selection

Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the inductor is the most important component in power regulator design. There are three important inductor specifications, inductor value, saturation current, and dc resistance (DCR).

$$\frac{V_{OUT} \cdot I_{OUT}}{V_{IN} \times \eta} > \frac{I_{LH}}{2}$$
(3)

The inductor current ripple I_{LH} is fixed by design. Therefore, the peak inductor current is calculated with 方程式

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

$$\begin{split} I_{L,peak} &= \frac{V_{OUT} \cdot I_{OUT}}{V_{IN} \times \eta} + \frac{I_{LH}}{2}; \quad \text{continuous current mode operation} \\ I_{L,peak} &= I_{LH}; \qquad \qquad \text{discontinuous current mode operation} \end{split}$$

where

I_{L.peak} is the peak inductor current.

The inductor's saturation current must be higher than the calculated peak inductor current. 表 9-2 lists the recommended inductors for TPS61099x device.

After choosing the inductor, the estimated switching frequency f in continuous current mode can be calculated by 方程式 5. The switching frequency is not a constant value, which is determined by L, V_{IN} and V_{OLIT}.

$$f = \frac{V_{IN} \cdot (V_{OUT} - V_{IN} \cdot \eta)}{L \cdot I_{LH} \cdot V_{OUT}}$$
(5)

DC RESISTANCE **INDUCTANCE** SATURATION VOUT [V]⁽¹⁾ SIZE (LxWxH) **PART NUMBER MANUFACTURER** [µH] **CURRENT [A]** $[m\Omega]$ 2.5 x 2.0 x 1.2 74404024022 2.2 1.95 80 Würth Elektronik > 3.0 2.2 1.7 92 2.5 x 2.0 x 1.1 LQH2HPN2R2MJR muRata 2.2 1.45 163 2.0 x 1.6 x 1.0 VLS201610CX-2R2M TDK 2.5 x 2.0 x 1.2 1.0 2.6 37 74404024010 Würth Elektronik 2.5 x 2.0 x 1.0 MLP2520W1R0MT0S1 TDK 1.0 2.3 48 ≤ 30 1.0 1.5 80 2.0 x 1.2 x 1.0 LQM21PN1R0MGH muRata

表 9-2. List of Inductors

9.2.1.1.5 Capacitor Selection

For best output and input voltage filtering, low ESR X5R or X7R ceramic capacitors are recommended.

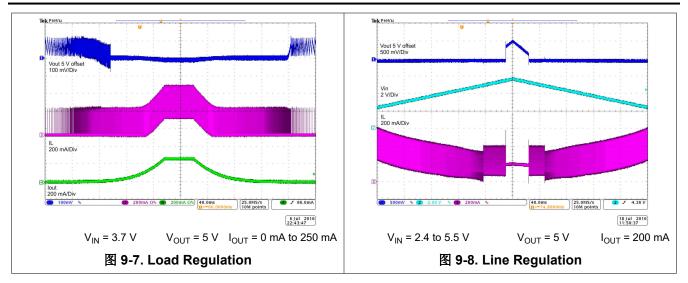
The input capacitor minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system rail for the device. An input capacitor value of 10 µF is normally recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible to the VIN and GND pins of the IC is recommended.

For the output capacitor of VOUT pin, small ceramic capacitors are recommended, placed as close as possible to the VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which cannot be placed close to the IC, the use of a small ceramic capacitor with a capacitance value of 1 μF in parallel to the large one is recommended. This small capacitor should be placed as close as possible to the VOUT and GND pins of the IC.

From the power stage point of view, the output capacitor sets the corner frequency of the converter while the inductor creates a Right-Half-Plane-Zero. Consequently, with a larger inductor, a larger output capacitor must be used. The TPS61099x is optimized to work with the inductor from 1 µH to 2.2 µH, so the minimal output capacitor value is 20 µF (nominal value). Increasing the output capacitor makes the output ripple smaller in PWM mode.

When selecting capacitors, ceramic capacitor's derating effect under bias should be considered. Choose the right nominal capacitance by checking capacitor's DC bias characteristics. In this example, GRM188R60J106ME84D, which is a 10-µF ceramic capacitor with high effective capacitance value at DC biased condition, is selected for V_{OLT} rail. The performance of TPS61099x is shown in *Application Curves* section.

Submit Document Feedback


Copyright © 2021 Texas Instruments Incorporated

⁽¹⁾ See Third-Party Products disclaimer

9.2.1.2 Application Curves

10 Power Supply Recommendations

The TPS61099x family is designed to operate from an input voltage supply range between 0.7 V to 5.5 V. The power supply can be alkaline battery, NiMH rechargeable battery, Li-Mn battery or rechargeable Li-Ion battery. The input supply should be well regulated with the rating of TPS61099x.

11 Layout

11.1 Layout Guidelines

As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.

11.2 Layout Example

The bottom layer is a large GND plane connected by vias.

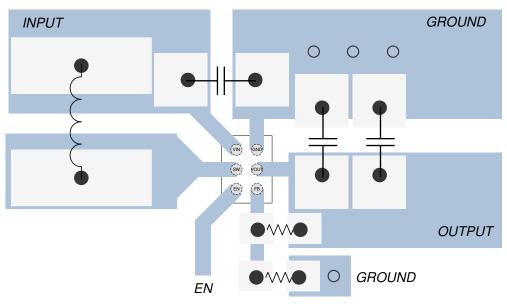


图 11-1. Layout -YFF

Top Layer

O VIA

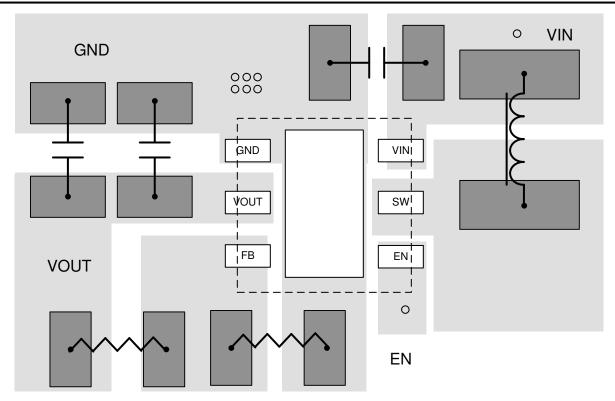


图 11-2. Layout - DRV

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

12.1.1.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPS61099x device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V_{IN}) , output voltage (V_{OUT}) , and output current (I_{OUT}) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- · Export customized schematic and layout into popular CAD formats
- · Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

12.1.2 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following:

- Performing Accurate PFM Mode Efficiency Measurements, SLVA236
- Accurately measuring efficiency of ultralow-IQ devices, SLYT558
- IQ: What it is, what it isn't, and how to use it, SLYT412

12.3 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.4 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

Copyright © 2021 Texas Instruments Incorporated

12.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments. WEBENCH® is a registered trademark of Texas Instruments.

is a registered trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 术语表

TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: TPS61099

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司 www.ti.com 2-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TPS610992YFFR	Active	Production	DSBGA (YFF) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	19J
TPS610992YFFT	Active	Production	DSBGA (YFF) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	19J
TPS610993YFFR	Active	Production	DSBGA (YFF) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	17X
TPS610993YFFT	Active	Production	DSBGA (YFF) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	17X
TPS610994YFFR	Active	Production	DSBGA (YFF) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	17N
TPS610994YFFT	Active	Production	DSBGA (YFF) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	17N
TPS610995DRVR	Active	Production	WSON (DRV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1NDU
TPS610995DRVT	Active	Production	WSON (DRV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1NDU
TPS610995YFFR	Active	Production	DSBGA (YFF) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	19K
TPS610995YFFT	Active	Production	DSBGA (YFF) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	19K
TPS610996YFFR	Active	Production	DSBGA (YFF) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	191
TPS610996YFFT	Active	Production	DSBGA (YFF) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	191
TPS610997YFFR	Active	Production	DSBGA (YFF) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	14K
TPS610997YFFT	Active	Production	DSBGA (YFF) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	14K
TPS61099DRVR	Active	Production	WSON (DRV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 150	1I8U
TPS61099YFFR	Active	Production	DSBGA (YFF) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	12G
TPS61099YFFT	Active	Production	DSBGA (YFF) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	12G

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

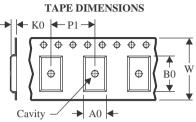
PACKAGE OPTION ADDENDUM

www.ti.com 2-May-2025

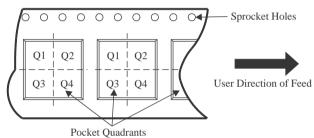
(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 9-Jun-2023

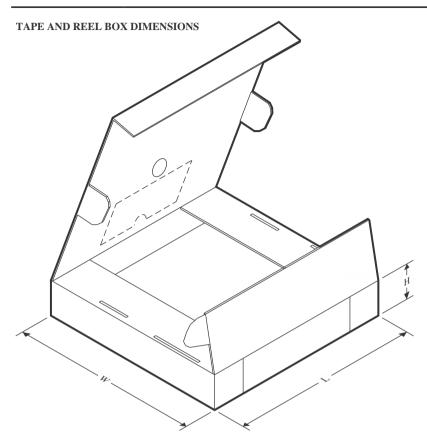

TAPE AND REEL INFORMATION

Γ	A0	Dimension designed to accommodate the component width
	В0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
	P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

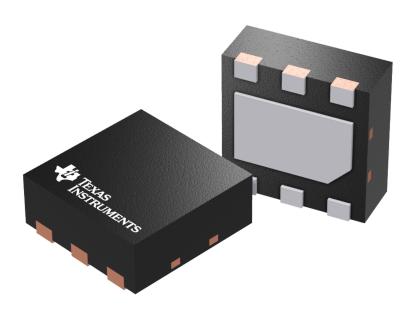
*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS610992YFFR	DSBGA	YFF	6	3000	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS610992YFFT	DSBGA	YFF	6	250	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS610993YFFR	DSBGA	YFF	6	3000	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS610993YFFT	DSBGA	YFF	6	250	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS610994YFFR	DSBGA	YFF	6	3000	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS610994YFFT	DSBGA	YFF	6	250	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS610995DRVR	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
TPS610995DRVT	WSON	DRV	6	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
TPS610995YFFR	DSBGA	YFF	6	3000	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS610995YFFT	DSBGA	YFF	6	250	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS610996YFFR	DSBGA	YFF	6	3000	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS610996YFFT	DSBGA	YFF	6	250	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS610997YFFR	DSBGA	YFF	6	3000	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS610997YFFT	DSBGA	YFF	6	250	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1
TPS61099DRVR	WSON	DRV	6	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
TPS61099YFFR	DSBGA	YFF	6	3000	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1


PACKAGE MATERIALS INFORMATION

www.ti.com 9-Jun-2023

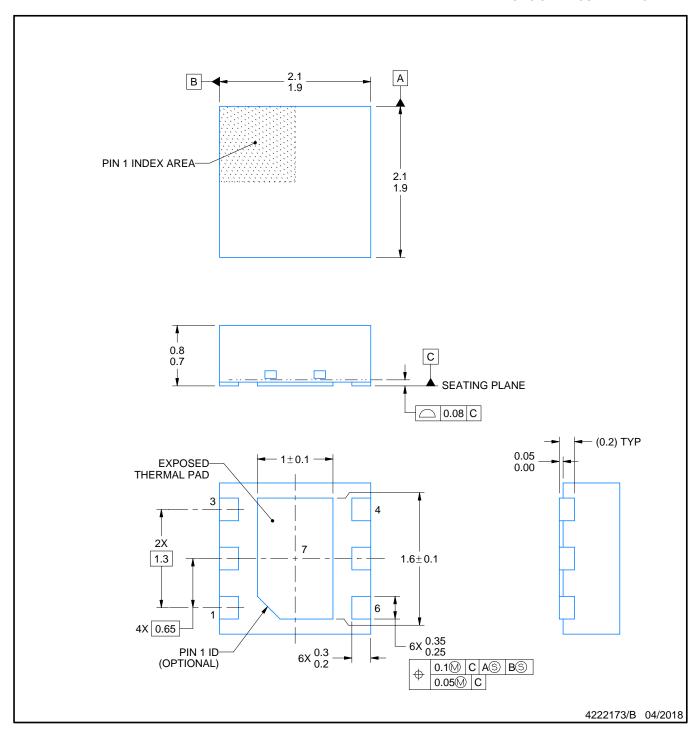
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ı	TPS61099YFFT	DSBGA	YFF	6	250	180.0	8.4	0.96	1.36	0.69	4.0	8.0	Q1



www.ti.com 9-Jun-2023

*All dimensions are nominal

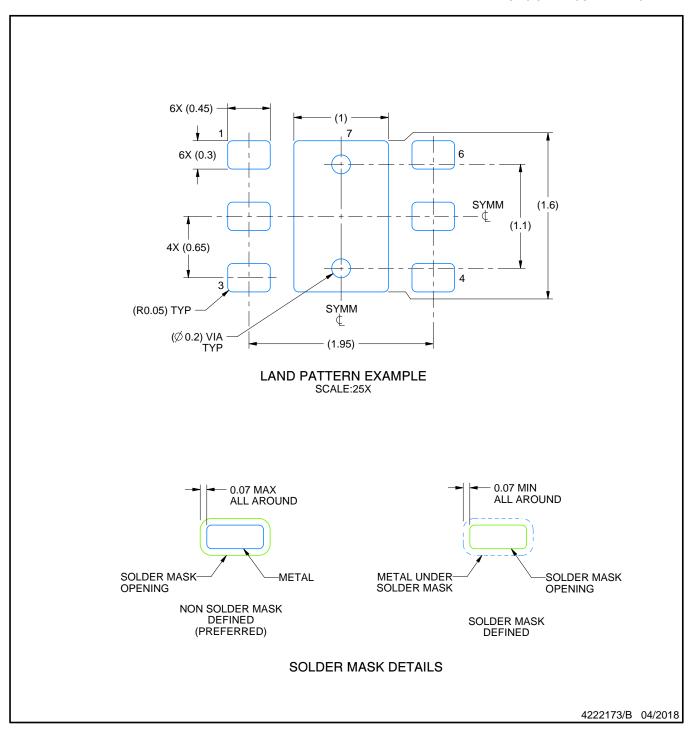
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS610992YFFR	DSBGA	YFF	6	3000	182.0	182.0	20.0
TPS610992YFFT	DSBGA	YFF	6	250	182.0	182.0	20.0
TPS610993YFFR	DSBGA	YFF	6	3000	182.0	182.0	20.0
TPS610993YFFT	DSBGA	YFF	6	250	182.0	182.0	20.0
TPS610994YFFR	DSBGA	YFF	6	3000	182.0	182.0	20.0
TPS610994YFFT	DSBGA	YFF	6	250	182.0	182.0	20.0
TPS610995DRVR	WSON	DRV	6	3000	210.0	185.0	35.0
TPS610995DRVT	WSON	DRV	6	250	210.0	185.0	35.0
TPS610995YFFR	DSBGA	YFF	6	3000	182.0	182.0	20.0
TPS610995YFFT	DSBGA	YFF	6	250	182.0	182.0	20.0
TPS610996YFFR	DSBGA	YFF	6	3000	182.0	182.0	20.0
TPS610996YFFT	DSBGA	YFF	6	250	182.0	182.0	20.0
TPS610997YFFR	DSBGA	YFF	6	3000	182.0	182.0	20.0
TPS610997YFFT	DSBGA	YFF	6	250	182.0	182.0	20.0
TPS61099DRVR	WSON	DRV	6	3000	210.0	185.0	35.0
TPS61099YFFR	DSBGA	YFF	6	3000	182.0	182.0	20.0
TPS61099YFFT	DSBGA	YFF	6	250	182.0	182.0	20.0


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4206925/F

PLASTIC SMALL OUTLINE - NO LEAD

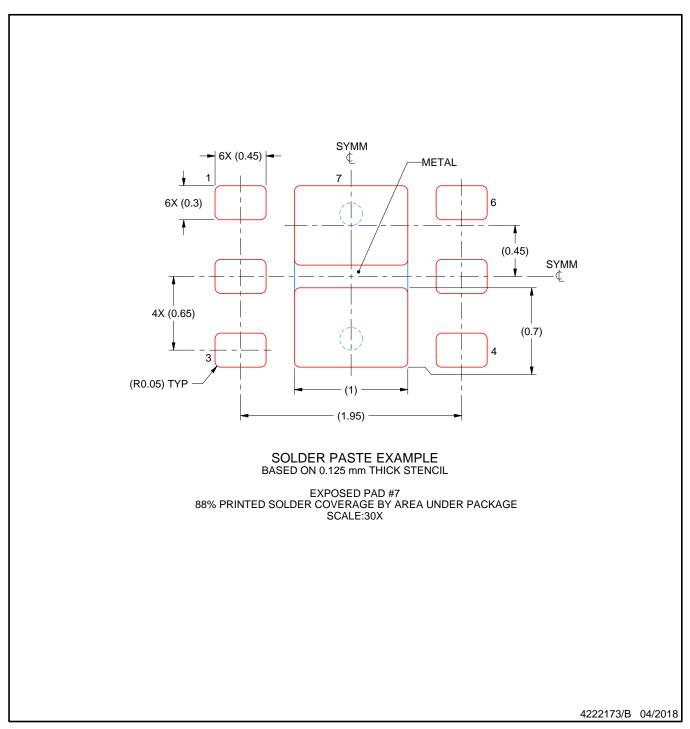
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

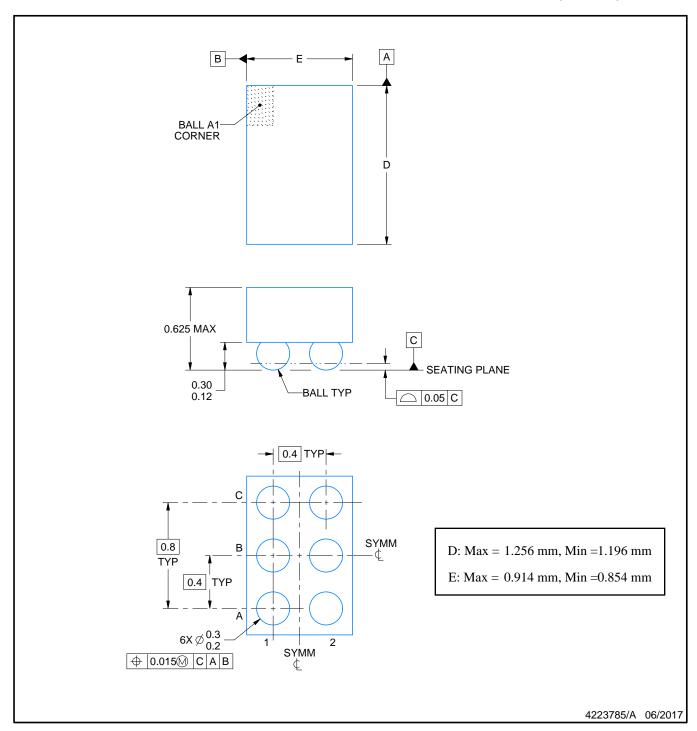
PLASTIC SMALL OUTLINE - NO LEAD


NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature
- number SLUA271 (www.ti.com/lit/slua271).

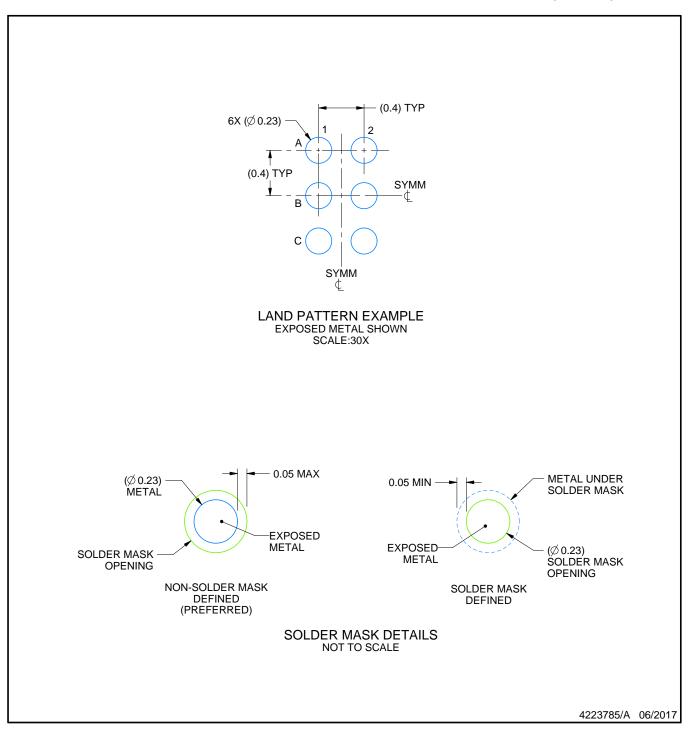
 5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.

PLASTIC SMALL OUTLINE - NO LEAD


NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

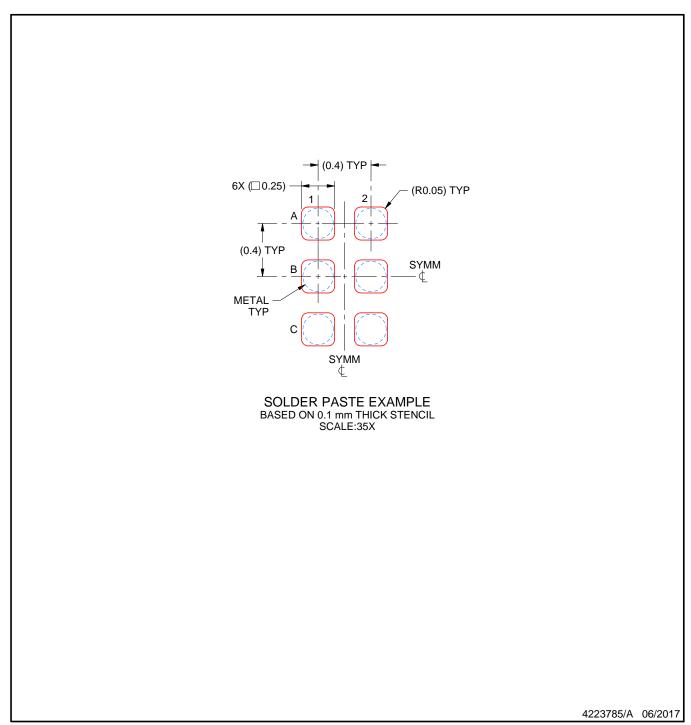
DIE SIZE BALL GRID ARRAY


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司