

SN54LV132A, SN74LV132A

SCLS394J-APRIL 1999-REVISED FEBRUARY 2015

SNx4LV132A Quadruple Positive-NAND Gates With Schmitt-Trigger Inputs

Features

- 2-V to 5.5-V V_{CC} Operation
- Max t_{pd} of 9 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) >2.3 V at $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Support Mixed-Mode Voltage Operation on All
- Latch-Up Performance Exceeds 250 mA per
- Ioff Supports Live Insertion, Partial Power-Down Mode, and Back Drive Protection
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

Applications

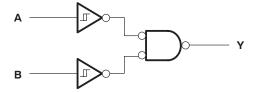
- Industrial PC: Rugged PC and Laptop
- Access Control and Security: Camera Surveillance IP Network
- Vending, Payment and Change Machines
- Patient Monitoring STB / DVR / Streaming Media (Withdraw)
- Other Motor Drives (Such as Switch Reluctance)

3 Description

The 'LV132A devices are quadruple positive-NAND gates designed for 2-V to 5.5-V V_{CC} operation.

The 'LV132A devices perform the Boolean function Y $= \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

Each circuit functions as a NAND gate, but because of the Schmitt trigger, it has different input threshold levels for positive- and negative-going signals.


These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean jitter-free output signals.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	SOIC (14)	8.65 mm × 3.91 mm
	SOP (14)	10.30 mm × 5.30 mm
LV132A	SSOP (14)	6.20 mm × 5.30 mm
	TSSOP (14)	5.00 mm × 4.40 mm
	TVSOP (14)	3.60 mm × 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

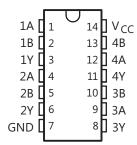
Logic Diagram (Positive Logic)

Table of Contents

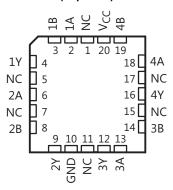
1	Features 1	9	Detailed Description	9
2	Applications 1		9.1 Overview	9
3	Description 1		9.2 Functional Block Diagram	9
4	Logic Diagram (Positive Logic) 1		9.3 Feature Description	9
5	Revision History		9.4 Device Functional Modes	9
6	Pin Configuration and Functions	10	Application and Implementation	
7	Specifications4		10.1 Application Information	10
•	7.1 Absolute Maximum Ratings 4		10.2 Typical Application	10
	7.2 ESD Ratings	11	Power Supply Recommendations	11
	7.3 Recommended Operating Conditions	12	Layout	11
	7.4 Thermal Information		12.1 Layout Guidelines	11
	7.5 Electrical Characteristics		12.2 Layout Example	11
	7.6 Switching Characteristics 6	13	Device and Documentation Support	12
	7.7 Switching Characteristics		13.1 Related Links	12
	7.8 Switching Characteristics		13.2 Trademarks	12
	7.9 Noise Characteristics for SN74LV132A		13.3 Electrostatic Discharge Caution	12
	7.10 Operating Characteristics		13.4 Glossary	12
_	7.11 Typical Characteristics	14	Mechanical, Packaging, and Orderable Information	10
8	Parameter Measurement Information 8		IIIOIIIIauoII	12

5 Revision History

Changes from Revision I (June 2010) to Revision J


Page

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and



6 Pin Configuration and Functions

SN54LV132A: J or W Package SN74LV132A: D, DB, DGV, NS, or PW Package (Top View)

SN54LV132A: FK Package (Top View)

A. NC - No internal connection

Pin Functions

F	PIN	1/0	DESCRIPTION
NO.	NAME	I/O	DESCRIPTION
1	1A	I	1A input
2	1B	I	1B
3	1Y	0	1Y
4	2A	I	2A
5	2B	I	2B
6	2Y	0	2Y
7	GND	_	GND
8	3Y	0	3Y
9	3A	I	3A
10	3B	I	3B
11	4Y	0	4Y
12	4A	I	4A
13	4B	I	4B
14	V _{CC}	_	V _{CC}

Copyright © 1999–2015, Texas Instruments Incorporated

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		-0.5	7	V
V_{I}	Input voltage ⁽²⁾		-0.5	7	٧
V_{O}	Voltage applied to any output in the hi	gh-impedance or power-off state (2)	-0.5	7	٧
Vo	Output voltage ^{(2) (3)}	-0.5	V _{CC} + 0.5	V	
I_{IK}	Input clamp current	V _I < 0		-20	mA
I_{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}	-25	25	mA
	Continuous current through V _{CC} or GND		-50	50	mA
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V
	alboriargo	Machine model (A115-A)	200	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

See (1)(2)

			MIN	MAX	UNIT	
V_{CC}	Supply voltage		2	5.5	V	
V_{I}	Input voltage		0	5.5	V	
Vo	Output voltage		0	V _{CC}	V	
		V _{CC} = 2 V		-50	μΑ	
	I _{OH} High-level output current	V_{CC} = 2.3 V to 2.7 V		-2		
I _{OH} High-lev	rigii-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		-6	mA	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-12		
		V _{CC} = 2 V		50	μΑ	
	Low lovel output ourrent	V_{CC} = 2.3 V to 2.7 V		2		
I _{OL}	Low-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		6	mA	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		12		
_		SN54LV132A	-55	125	°C	
T _A	Operating free-air temperature	SN74LV132A	-40	125	10	

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

(2) SN54LV132A is in product preview

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value is limited to 5.5-V maximum.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.4 Thermal Information

over operating free-air temperature range (unless otherwise noted)

	THERMAL METRIC ⁽¹⁾		DB	DGV	NS	PW	UNIT
	THERMAL METRIC			14 PINS			UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	90.6	107.1	129.0	90.7	122.6	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	50.9	59.6	52.1	48.3	51.4	
$R_{\theta JB}$	Junction-to-board thermal resistance	44.8	54.4	62.0	49.4	64.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	14.7	20.5	6.5	14.6	6.7	
ΨЈВ	Junction-to-board characterization parameter	44.5	53.8	61.3	49.1	63.8	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETED	TEGT COMPITIONS	v	SN54L	V132A ⁽¹⁾	SN74	LV132A		
	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP MAX	MIN	TYP MAX	UNIT	
			2.5 V	1	1.75	1	1.75		
V_{T+}	Positive-going input threshold voltage		3.3 V	1.31	2.31	1.31	2.31	V	
	tineonola voltage		5 V	1.95	3.5	1.95	3.5		
			2.5 V	0.75	1.5	0.75	1.5		
V_{T-}	Negative-going input threshold voltage		3.3 V	0.99	2.07	0.99	2.07	V	
	tinoonola voltago		5 V	1.5	3.05	1.5	3.05		
			2.5 V	0.25	1	0.25	1		
ΔV_{T}	Hysteresis (V _{T+} - V _{T-})		3.3 V	0.33	1.32	0.33	1.32	V	
			5 V	0.5	2	0.5	2		
		I _{OH} = -50 μA	2 to 5.5 V	V _{CC} - 0.1		V _{CC} - 0.1			
V		$I_{OH} = -2 \text{ mA}$	2.3 V	2		2		V	
V_{OH}		$I_{OH} = -6 \text{ mA}$	3 V	2.48		2.48		V	
		$I_{OH} = -12 \text{ mA}$	4.5 V	3.8		3.8			
		I _{OL} = 50 μA	2 to 5.5 V		0.1		0.1		
V		$I_{OL} = 2 \text{ mA}$	2.3 V		0.4		0.4	V	
V_{OL}		$I_{OL} = 6 \text{ mA}$	3 V		0.44		0.44	V	
		I _{OL} = 12 mA	4.5 V		0.55		0.55		
I		$V_I = 5.5 \text{ V or GND}$	0 to 5.5 V		±1		±1	μΑ	
I _{CC}		$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V		20		20	μA	
I _{off}		V_I or $V_O = 0$ to 5.5 V	0 V		5		5	μA	
C _i		$V_I = V_{CC}$ or GND	3.3 V		1.9		1.9	pF	

⁽¹⁾ SN54LV132A is in product preview

Copyright © 1999–2015, Texas Instruments Incorporated

7.6 Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 2.5 V ±0.2 V (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TO (OUTPUT) LOAD		Т	T _A = 25°C			SN54LV132A ⁽¹⁾		SN74LV132A	
			CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
t _{pd} A or B	V	C _L = 15 pF		7.9 ⁽²⁾	16.5 ⁽²⁾	1 ⁽²⁾	18.5 ⁽²⁾	1	18.5			
	r	C _L = 50 pF		10.8	20.2	1	23	1	23	ns		

(1) SN54LV132A is in product preview

7.7 Switching Characteristics

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD	T _A = 25°C			SN54LV132A ⁽¹⁾		SN74LV132A		UNIT
			CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
A or D	V	C _L = 15 pF		5.6 ⁽²⁾	11.9 ⁽²⁾	1 (2)	14 ⁽²⁾	1	14	20	
^L pd	A or B	Ť	C _L = 50 pF		7.6	15.4	1	17.5	1	17.5	ns

(1) SN54LV132A is in product preview

7.8 Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5 V ±0.5 V (unless otherwise noted) (see Figure 3)

PARAMETER	DADAMETER FROM TO LOAD		T _A = 25°C			SN54LV1	32A ⁽¹⁾	SN74LV132A		UNIT	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
•	A or B	V	C _L = 15 pF		3.9(2)	7.7 ⁽²⁾	1 (2)	9(2)	1	9	2
^L pd	AUID	r	C _L = 50 pF		5.3	9.7	1	11	1	11	ns

(1) SN54LV132A is in product preview

7.9 Noise Characteristics for SN74LV132A

 $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}^{(1)}$

• 66 0.0	7 1, SE SS P. 1 1 A = S S				
	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.21	8.0	
$V_{OL(V)}$	Quiet output, minimum dynamic V _{OL}		-0.09	-0.8	
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		3.12		V
$V_{IH(D)}$	High-level dynamic input voltage	2.31			
V _{IL(D)}	Low-level dynamic input voltage			0.99	

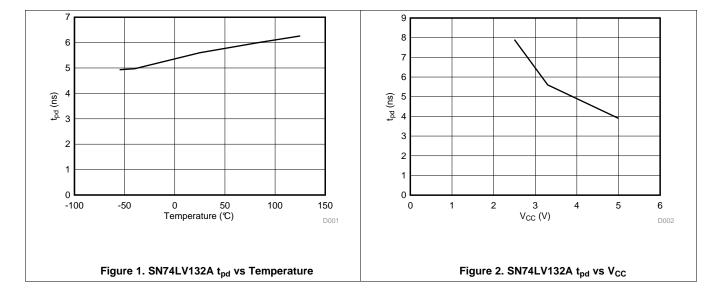
⁽¹⁾ Characteristics are for surface-mount packages only.

7.10 Operating Characteristics

 $T_A = 25^{\circ}C$

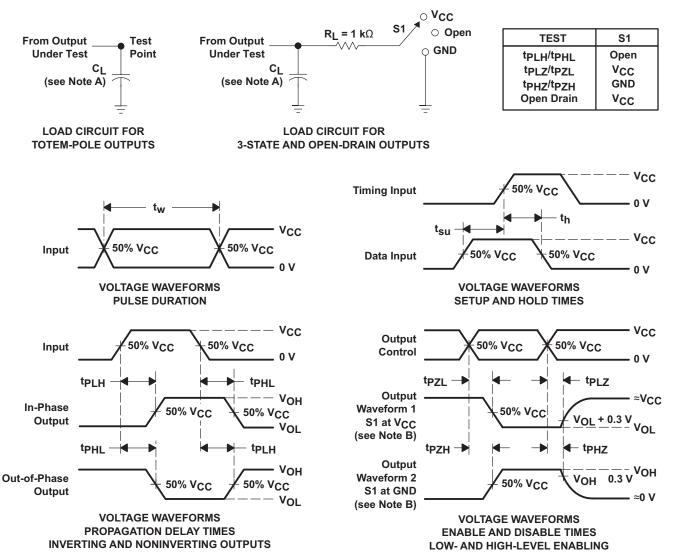
PARAMETER		TEST CONDITIONS	V _{cc}	TYP	UNIT
_	Dougs discipation consoltance	C F0 7	3.3 V	7.5	pF
C_{pd}	Power dissipation capacitance	C _L = 50 pF, f = 10 MHz	5 V	11.2	

Product Folder Links: SN54LV132A SN74LV132A


⁽²⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

⁽²⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

⁽²⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.



7.11 Typical Characteristics

8 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r \leq$ 3 ns. \leq 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and tPZH are the same as t_{en}.
- G. t_{PHL} and t_{PLH} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

9 Detailed Description

9.1 Overview

The SN74LV132A Is a quadruple 2-input positive NAND gate with low drive that produces slow rise and fall times. This reduces ringing on the output signal. Each circuit functions as a NAND gate, but because of the Schmitt trigger, it has different input threshold levels for positive- and negative-going signals. These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean jitter-free output signals.

9.2 Functional Block Diagram

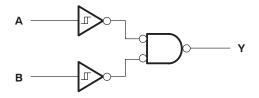


Figure 4. Logic Diagram (Positive Logic)

9.3 Feature Description

- Wide operating voltage range, operates from 2 to 5.5 V
- Allows down voltage translation, inputs accept voltages to 5.5 V

9.4 Device Functional Modes

Table 1. Function Table

INP	OUTPUT	
Α	В	Y
Н	Н	L
L	Х	Н
Х	L	Н

Copyright © 1999–2015, Texas Instruments Incorporated

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The SN74LV132A is a low-drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The inputs can accept voltages to 5.5 V at any valid V_{CC} making it Ideal for down translation.

10.2 Typical Application

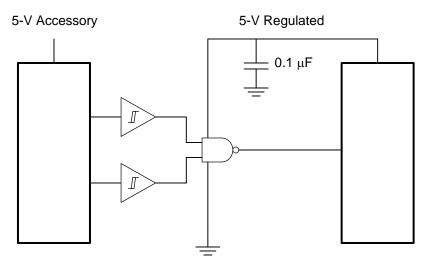


Figure 5. Typical Application Schematic

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing. The Schmitt trigger inputs allow for slow or noisy inputs while producing clean outputs.

10.2.2 Detailed Design Procedure

- 1. Recommended input conditions
 - Specified high and low levels. See (V_{IH} and V_{IL}) in Recommended Operating Conditions.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}
- 2. Recommend output conditions
 - Load currents should not exceed 25 mA per output and 50 mA total for the part
 - Outputs should not be pulled above V_{CC}

Typical Application (continued)

10.2.3 Application Curve

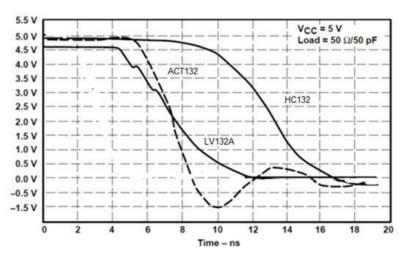


Figure 6. Switching Characteristics Comparison

11 Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in *Recommended Operating Conditions*.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends 0.1 μ F and if there are multiple V_{CC} terminals then TI recommends .01 μ F or .022 μ F for each power terminal. It is okay to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient. It is generally okay to float outputs unless the part is a transceiver. If the transceiver has an output enable pin it will disable the outputs section of the part when asserted. This will not disable the input section of the IOs so they also cannot float when disabled.

12.2 Layout Example

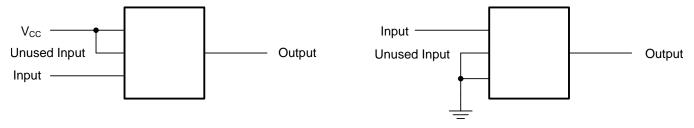


Figure 7. Layout Recommendation

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54LV132A	Click here	Click here	Click here	Click here	Click here
SN74LV132A	Click here	Click here	Click here	Click here	Click here

13.2 Trademarks

All trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 1-May-2025

PACKAGING INFORMATION

Orderable	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
part number	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74LV132AD	Obsolete	Production	SOIC (D) 14	-	_	Call TI	Call TI	-40 to 125	LV132A
SN74LV132ADBR	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV132A
SN74LV132ADGVR	Active	Production	TVSOP (DGV) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV132A
SN74LV132ADR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU SN NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV132A
SN74LV132ADRE4	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV132A
SN74LV132ANSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	74LV132A
SN74LV132APW	Obsolete	Production	TSSOP (PW) 14	-	-	Call TI	Call TI	-40 to 125	LV132A
SN74LV132APWR	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LV132, LV132A)
SN74LV132APWRG4	Active	Production	TSSOP (PW) 14	2000 null	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV132A
SN74LV132APWRG4	Active	Production	TSSOP (PW) 14	2000 null	No	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV132A
SN74LV132APWT	Obsolete	Production	TSSOP (PW) 14	-	-	Call TI	Call TI	-40 to 125	LV132A

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

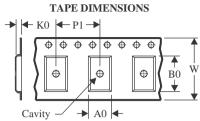
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 1-May-2025


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 7-Dec-2024

TAPE AND REEL INFORMATION

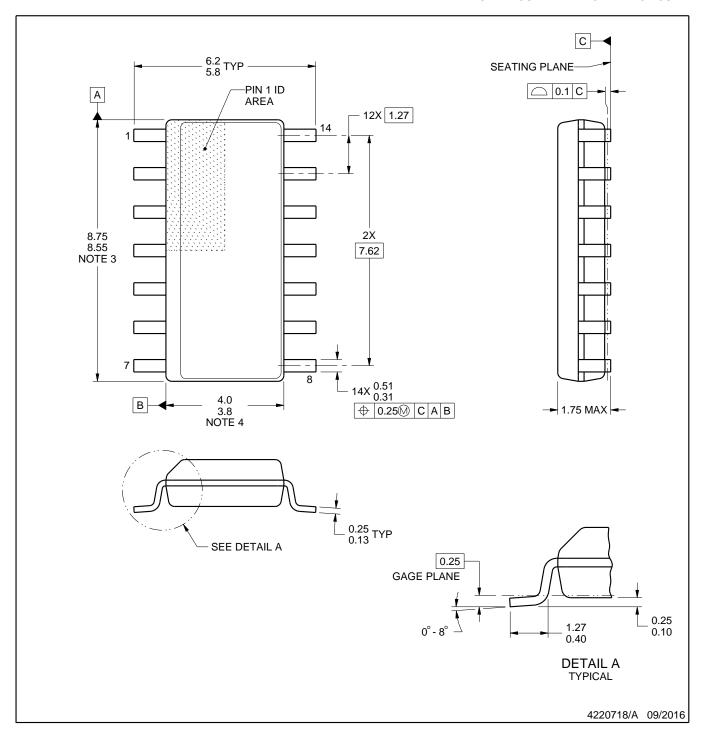
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV132ADBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LV132ADGVR	TVSOP	DGV	14	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74LV132ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LV132ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LV132ADRE4	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LV132ADRE4	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LV132ANSR	SOP	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LV132APWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV132APWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 7-Dec-2024



*All dimensions are nominal

All difficultions are norminal	1						1
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV132ADBR	SSOP	DB	14	2000	356.0	356.0	35.0
SN74LV132ADGVR	TVSOP	DGV	14	2000	356.0	356.0	35.0
SN74LV132ADR	SOIC	D	14	2500	353.0	353.0	32.0
SN74LV132ADR	SOIC	D	14	2500	356.0	356.0	35.0
SN74LV132ADRE4	SOIC	D	14	2500	356.0	356.0	35.0
SN74LV132ADRE4	SOIC	D	14	2500	353.0	353.0	32.0
SN74LV132ANSR	SOP	NS	14	2000	356.0	356.0	35.0
SN74LV132APWR	TSSOP	PW	14	2000	356.0	356.0	35.0
SN74LV132APWR	TSSOP	PW	14	2000	356.0	356.0	35.0

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

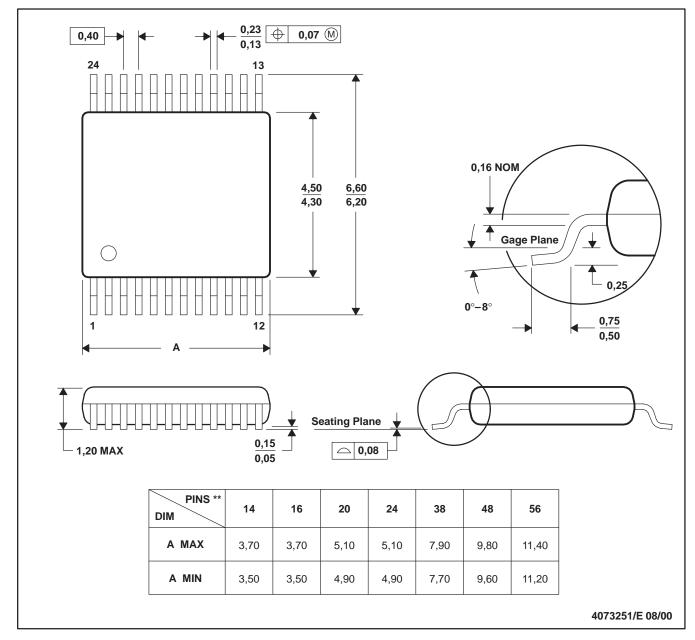
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

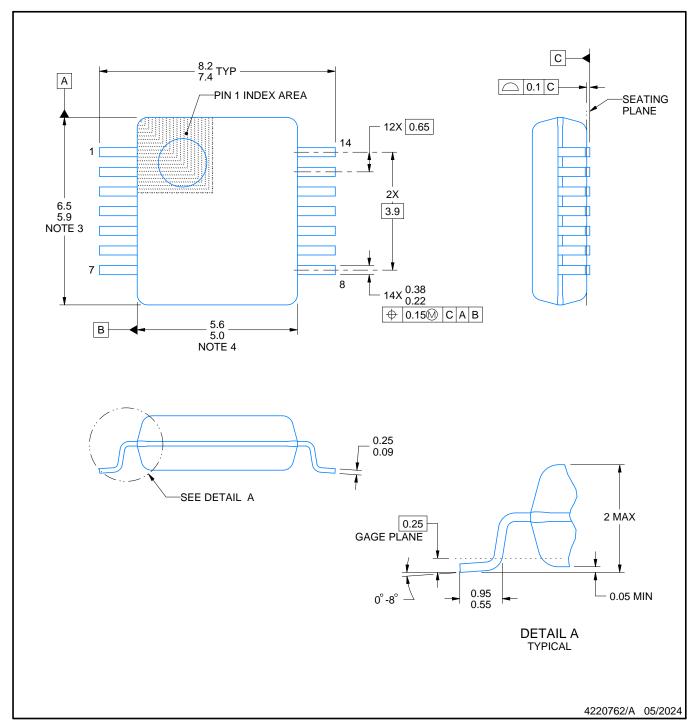
NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DGV (R-PDSO-G**)

24 PINS SHOWN

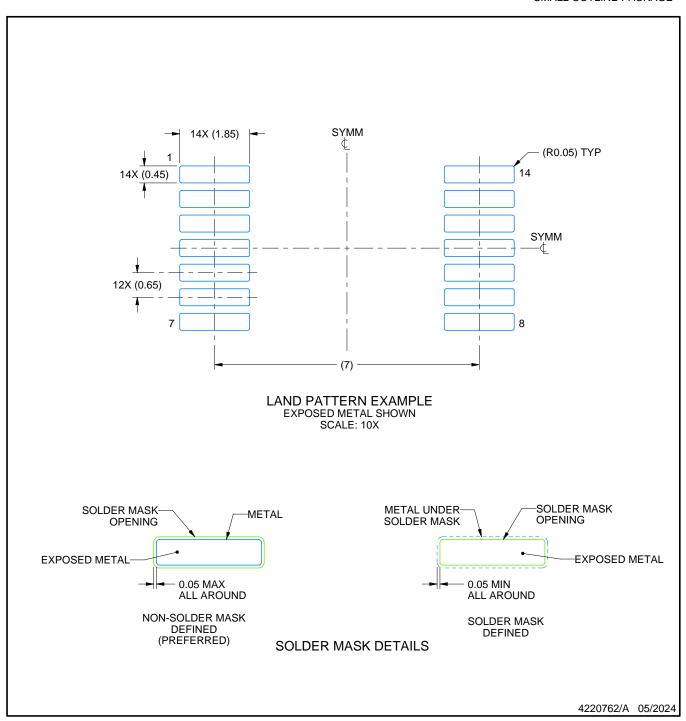
PLASTIC SMALL-OUTLINE


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

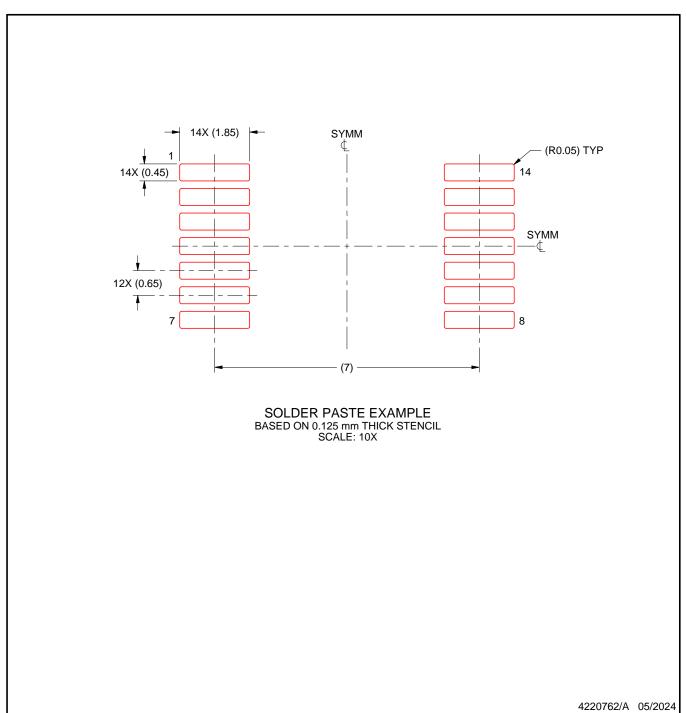
D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated